Question 1: [12%, Work-out question, Learning Objectives 4, 5| Consider the following
continuous-time periodic signal x(t):

|t if -3<t<3
z(t)={3 if3<t<6 (1)
periodic with period 9
Let a, denote the Continuous-Time Fourier Series coeflicients of z(t).
Consider another signal y(t):
—1 if0<t<3
1 if3<(<6 ‘
ylt) = iz : (2)
0 f6<t<9y
periodic with period 9
Let b, denote the Continuous-Time Fourier Series coefficients of y(t).
1. [12%] Express the value of b in terms of ay.
Hint 1: It will be useful if you can plot z(¢) and y(t) first.
Hint 2: You may need to combine more than one properties.
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Question 2: [20%, Work-out question, Learning Objectives 2, 3, 4, and 5] Consider the
following discrete-time signal:

r[n} = ejD.lW?L s ej(].?rm (3}

and a DT-LTT system with the following impulse response:

hn] = {e‘” f0<n (4)

0 otherwise.

1. [8%] Find the DTFS of z[n].

2. [12%)] Let y[n] denote the output of this LTI system when the input is z[n]. Find
the DTFS of y[n].

Hint 1: You may need the following formula:

S okt 2 i< L. (5)
k=1 L=r

Hint 2: If you do not know the answer to the previous subquestion, you can assume
the following:

(a) The period of x[n] is 100.

(b) The DTFS coefficients of z[n] are

(6)

Eoif1<k<20
. =
"7 Yo 21 < k<100

You will receive full mark if your answer is correct. However, please indicately explic-
itly whether you are solving the original question or you are solving the alternative
questlio.

N= LeM(2m  ZT) = LeM(20,10)
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Question 3: [14%, Work-out question, Learning Objectives 4 and 5] Consider a continuous
time signal z(¢):

24t if-2<t <2
= & 4 Hf2<t=hH . (7)
0 otherwise

Let X (jw) denote the CTFT of x(¢).

1. [6%] Find the value of X(30).
2. [8%] Find the value of [7 X (jw)e!®dw.

;Eij #JO {;
[ X(j0)= | x(t)e dt
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Question 4: [15%, Work-out question, Learning Objectives 2, 3, 4 and 5] Consider the

following signal z(¢)

sin(6¢)

2(t) = (sin(élt) sin(5t)) .

(wt)?

(8)

i

where the notation “+” means convelution. Find the corresponding Fourier transform

X(jw) and plot it for the range of —12 < w < 12.
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Question 5: [L6%, Work-out question, Learning Objectives 4, 5, and 6] Consider a discrete
time signal

1

z[n] = Z(k - 1 Jpd®0hmy

k=0
Find the corresponding DTFT X (e/*) and plot it for the range of —27 < w < 27
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X[n] = (l)@j
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Question 6: [23%, Learning Objectives 3, 4, 5, and 6] Consider the following AM trans-
mission system. The input signal is z(f) = % We first multiply z(t) by cos(4¢). That
18,

y(t) = x(t) - cos(4t).
The transmitter then transmits signal y(¢) through the antenna.
At the receiver side, we first multiply y(¢) by 2sin(4¢). That is z2(t) = y(¢)-2sin(4t) and
then pass z(t) through a low pass filter with cutoff frequency W = 7.5 rad/sec. Denote
the final output by w(t) = z(t) * hLpr(t).

1. [18%)] Plot the CTFT W (jw) of w(¢) for the range of —10 < w < 10.

2. [5%] Find the expression of w(t).

Hint 1: This is a more advanced question. Please work on it after you have finished
other questions.

Hint 2: If you do not know how to solve this question, you can write down the
transmitter and receiver diagrams of AM-DSB when (i) filtering a radio signal to make it
of bandwidth 10k Hz; (ii) then sending the filtered signal using carrier frequency 950kHz;
and (iii) the receiver needs to demodulate the original signal. You need to carefully mark
all the frequency parameters used in your scheme with the correct unit. If your answer is

correct, you will receive 13 points. \
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WQW’) is a rect function with o width of 0.5

fonvalved wita a Sine wave wiih w, = 7,28
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Discrete-time Fourier series

whn] = Z (/N n

k=(N)
1 e
e i [im] o —Tk(2T/N)n
% =+ Z x[nle
n=(N)
Continuous-time Fourier series
oC
T(t) — Z ak{:jk‘(zzfr/'])t
k=—oc
L ¥ —jk(2m /Tt
U = T L) i
L

Coontinuous-time Fourier transform

i g
x(t) / X (jw)e’ dw

a5
x ¥
X(jw) :/ z(t)e ™ dt
Discrete-time Fourier transform
1 - oo
zn]=— | X(jw)e"dw
Z?T 2 '
X(e™) = Z J:[n]e_“"-‘””
n=—oc

Laplace transform

7 transform
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Linearity

Time Shifting
Frequency Shifting
Conjugation

Time Reversal
Time Scaling

Periodic Convolution

Multiplication

Differentiation

Integration

Conjugate Symmetry for
Real Signals

Real and Even Signals

Real and Odd Signals

Even-Odd Decomposition
of Real Signals

Fourier Series Representation of Periodic Signals ~ Chap, 3
TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES
Property Section Periodic Signal Fourier Series Coefficients
x(t)| Periodic with period T and aj
y() | fundamental frequency wo = 2T b
35.1 Ax() + By(D) Aay + Bby
3.5.2 x(t —to) ape= i = gy eI
L,jMwﬂ!x(!] - gj.'\'fﬁ2.r/T}r xu) F
35.6 X' (1) aty
353 x(—1) g
354 x(et), a = 0 (periodic with period T/a) ay
J x(T)y(r — Tdt Taiby
X
3.5.5 (¥ > abie
j=-
dx(t) . 20
T Jhaway = jk—a
4 (finite valued and 1 1
J x(nde . . — | = | S |
s periodic only if @ = ) Jkeaq JkQ27IT)
ap = a’,
Refa} = Rela}
3.5.6 x(f) real Imfa,} = —Imia.i}
lail = lal
Yay = —La-¢
3.5.6 x(¢) real and even a, real and even
3.5.6 x(f) real and odd a;, purely imaginary and odd
{xg(r) = Sedx(n)} [x(r) real] Refar}
xo(1) = Qd{x(n)}  [x(r) real] jdmia}
Parseval’s Relation for Periodic Signals
1 £ e
’f lx(nFdr = ST ja? F
T Ir T

three examples, we illustrate this. The last example in this section then
properties of a signal can

Example 3.6

demonstrates ¥
be used to characterize the signal in great detail.

Consider the signal g(r) with a fundamental period of 4, shown in Figure 3-_10'

could determine the Fourier series representation of g(r) directly from the analysi*™=
tion (3.39). Instead, we will use the relationship of g(1) to the symumetric permd!: 4

wave x(r) in Example 3.5. Referring to that example, we see thal, with
T =1,

gty =x(¢t -1 - 1/2.
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Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(r),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1,

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property Periodic Signal Fourier Series Coefficients
xfn] ] Periodic with period N and a; | Periodic with
y[n] ) fundamental frequency wy = 27/N by | period N
Linearity Ax[n] + By[n] Aay + Bby
Time Shifting x[n = ng) aye kTN
Frequency Shifting gMmin 4 1h) Ay
Conjugation x"[n] a’,
Time Reversal x[—n] a_
. . x[n/m], if nis a multiple of m 1 viewed as periodic
Time Scali m = . : —ay .
HEEeEae Fl] { 0 if n is not a multiple of m m® with period mN

(periodic with period mN)

Periodic Convolution z x[riyln—r] Nayb,
F={N)

f egs. Multiplication x[n]y[n] z arb
jodic =)
ﬂr;lﬂ _1 ‘First Difference x[n] = x[n— 1] (1 — gk,
=4 ' : 1 finite valued and pericdic only 1
k:Z:L x[k](if a =0 (1 = gz |%
a, = a'_,(
Refar} = Refa_y}
onjugate Symmetry for x[n] real Imfa} = —9mia_,}
Real Signals lag] = |a_y]
{a;c = ‘{af,'(
::and Even Signals x[n] real and even ay real and even
:‘and Odd Signals x[n] real and odd ay purely imaginary and odd
Odd Decomposition { x.[n] = 8v{x[n]} [x[n] real] Qefai}
cal Signals x,[n] = Od{x[nl} [x[n] real] j9mia}

Parseval’s Relation for Periodic Signals

5 S Il = 3
)

R=(N) k=(N
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4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER

In the preceding sections

and in the problems at

The Continuous-Time Fourier Transform

TRANSFORM PAIRS

the end of the chapter, we have consid-

ered some of the important properties of the Fourier transform. These are summarized ip

Table 4.1, in which we have also in

erty has been discussed.

TABLE 4.1

Property

In Table 4.2, we have assembled a list of many of

transform pairs. We will encounter many of these repe

PROPERTIES OF THE FOURIER TRANSFORM

Aperiodic signal

dicated the section of this chapter i

n which each prop.

the basic and important Fourier
atedly as we apply the tools of

Fourier transform

Section

431 Linearity

432 Time Shifting

43.6 Erequency Shifting

433 Conjugation

435 Time Reversal

435 Time and Frequency
Scaling

4.4 Convolution

45 Multiplication

434 Differentiation in Time

434 Integration

4.3.6 Differentiation in
Frequency

433 Conjugate Symmetry
for Real Signals

433 Symmetry for Real and
Even Signals

433 Symmetry for Real and
Odd Signals

433 Even-Odd Decompo-
sition for Real Sig-
nals

437

J7T|,t(r}{2dﬁ =

x(1
¥(£)

x(t— ty)
gt x(1)
x(1)
x(—1)

x(at)

x(1) = (1)
x()y()

d

—E_L(t)

[¢
x(t)dt

tx(8)

x(¢) real

x(r) real and even
x(t) real and odd

[ x(t) real]
[x(z) real}

x.(f) = Evix(D}
1, (1) = Odix()}

Parseval’s Relation for Aperiodic Signals

.
5 | X(jo)l'de

X(jw)
Y(jw)

aX(jw) + bY(jw)
e M X(jw)
X(jlw — @o))
X(—jw)
X(—jw)

1 (je

m"(ﬂ
X(jw)Y(jo)
L [ X(j6)Y(w — )
jwX(jw)

L x(jw) + mX(0)8@)
Jw

iy

J ELTJXUOJ)

X(jw) = X (—jw)
RelX(jw)} = (RefX (-~ jok
I X(jow)t = — g X(~ ol
Xl = |x(—je)l
IX(jw) = —4X(-jw)
X{(jw)real and even

X(jw) purely imaginary and odd

GrefX(ja)}
X (o)t

Chap. 4
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TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS
Fourier series coefficients
Signal Fourier transform (if periodic)
z g ekt 2 2 ad(w — kwy) ag
k=—w ke —w
efu 2md(ew — wy) i
¢ a; = 0, otherwise
P =ay =1
cos wyt m[3{w — wg) + 8w + wy)] =
« = 0, otherwise
I
; T a = —a.,; = -~
t —[6(w ~ — 8w + 2
- j[ (@ =il = B )] a; = 0, otherwise
ap =1 a, =0 k+#0
X =1 27 8(w) this is the Fourier series representation for
any choice of T > 0

Periodic square wave
lf| < T

1’ 4o . .

x(ty = [O, T<l=I 3 2 sin kawy T 8= g woT) —_— kwoT) | _ sin kapT,
< & ™ km

and L

x(t+T) = x(1)

= 2 < 2wk 1
n;ﬂa(: - nT) 7,§m6(w - T) a = 7 forallk
{ L: =1 2sinw T,
x(r) _ —
0, =1 w

sin Wt ! 1, lwl<W

X(jw) = [ fol
Tt 0 |w>w

163) 1 —_
1

70 — + mé(w) ™=
jo

8t — 1) e~/ -

e~ "u(t), Refa} > 0 1 L

’ a+ jw
te” " u(t), Ref{a} > 0 . —
’ (a+ jw)
%e"”u(r), 1
Refa) > 0 (a+ jo)yr a
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TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM
Sectlon  Property Aperiodic Signal Fourier Transform
x[n] X(ef"*)] periodic with
y[n] Y(e/*)] period 27
53.2 Linearity ax[n] + byln] aX(e™) + bY(e')
533 Time Shifting xln = myl ety (e
5813 Frequency Shifting e/*" x{n] X(e/woly
534 Conjugation x"[n] X'(e™)
536 Time Reversal x[—n] X(e ™)
. . _ x[n/k], if n = multiple of £ ™
537 Time Expansion Xpin] = { 0 R —— X(e- )
5.4 Convoluticn x[n] * y[n] X(e!)Y(e!™)
3.5 Multplication x[nly[n] %J X(ejD)Y(e‘i(”’g))dﬂ
bl
535 Differencing in Time x[n] — x[n— 1] (1 — e ™)X (e™)
. . 1 i
535 Accumulation FZL x[k] m}{(el )
+mX(e®) D 8w - 2mk)
k=-m=
Jur
5.3.8 Differentiation in Frequency  nx[n] 'd"fi(z )
X(e/™) = X*(e™ )
Re{X(e/)} = Re{X(e)}
534 Conjugate Symmetry for x[n] real Im{X(e/)) = —9Im{X(e~7)}
Real Sig‘l’lalS |X(ej‘")r - |X(E_j‘”){
; LX(ef) = —EX(e ™)
534 Symmetry for Real, Even x[n] real an even X(e/*) real and even
Signals o
5.34 Symmetry for Real, Odd x[n] real and odd X(e/) purely imaginary and
Signals odd
534 Even-odd Decomposition x.[n] = &A{x[n}} [x[n] real] Ref{X(e™)}
of Real Signals %,[n] = Od{x[nl} [x[n} real] jIm{X(e™)}
539 Parseval’s Relation for Aperiodic Signals

+e

n=-m

2 _ 1 jwry[2
> b = - [ K(e)Pda

a duality relationship between the discrete-time Fourier transform and the continuous-time
Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence a; in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-
quence ay, are the values of (1/N)x[—n] (i.e., are proportional to the values of the original




TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal Fourier Transform Fourier Series Coefficients (if periodic)
; . e k
S melnalti D 4l (w - 24”—) ag
E=(N) T N
(@) wg =22
‘ - I, k=mm=Nm=2N,
edvo!t 27 S 8w — wg — 27) ay = mm MBSl
T 0, otherwise
(b) ¢ irrational > The signal is aperiodic
(a) wy = gK—rm
= ! = =+
coswgh - Z (8(w — wy - 2arl) + 8w + wy — 2w} ay = [ 3 = S EMEN SRS, .
f— 0, otherwise
(b) 5% irrational = The signal is aperiodic
_ (@ wy =3
} o % Y W EN N
3 n T = -}
sinwon 7 E{ﬁ(m—wn-217f)-5(w+w0—271'l’)} ag = _T‘j' k= —n—rEN—r&iN ..
e 0, otherwise
H (b) % irrational = The signal is aperiodic
s 1, k=0%N22N,...
5 i x[n] =1 2 S §lw —2m) ap = i
% foweris 0, otherwise
S Periodic square wave
£ - L =W . sin[(2rk/N)(N, + ) S
: x|n] = & iy = —=—— ! BN BN
: 0, N <|n = NP2 2 S b (ru _ 2wk * N sin[27mk/2N]
g and o N 2N+ L
; g = , k=0,EN £2N, ...
x[n+ N1 = xln] N
= 2 <5 2wk 1
;ﬁﬁ[n — k] W kf,,s(w ~ 'AT) ay = 4 for all k
d'uln), la <1 L _
’ I —ae /v
1, < ‘N 1
x{n]= | = z{nlaf(in + 5l .
0, |ol =Ny sin(a/2)
B | L 0<lw| =W
sinWn _ W oo (W =
s = osine ( = ) X{w) 6. WS #
QW X(w) periodic with period 2ar
aln| 1 o=
1 2
u[n) —_ ST mé(w - 2mwk) —
[ —e /v e
&l — ny) e~ oM oo
(n+ Da"ulnl, la| <1 __17_ _ - ]
(1 — ae~iw)2 —’_'//
mtr=1 , I :
G opr el <1 gy -
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