Midterm \#3 of ECE301, Section 3 (CRN 17102-004)

8-9pm, Monday, November 12, 2018, PHYS112.

1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and signature in the space provided on this page, NOW!
2. This is a closed book exam.
3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
4. Use the back of each page for rough work.
5. Neither calculators nor help sheets are allowed.

Name:
Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.

Question 1: [12\%, Work-out question, Learning Objectives 4, 5] Consider the following continuous-time periodic signal $x(t)$:

$$
x(t)= \begin{cases}|t| & \text { if }-3 \leq t \leq 3 \tag{1}\\ 3 & \text { if } 3<t \leq 6 \\ \text { periodic with period } 9 & \end{cases}
$$

Let a_{k} denote the Continuous-Time Fourier Series coefficients of $x(t)$.
Consider another signal $y(t)$:

$$
y(t)= \begin{cases}-1 & \text { if } 0<t \leq 3 \tag{2}\\ 1 & \text { if } 3<t \leq 6 \\ 0 & \text { if } 6<t \leq 9 \\ \text { periodic with period } 9 & \end{cases}
$$

Let b_{k} denote the Continuous-Time Fourier Series coefficients of $y(t)$.

1. [12\%] Express the value of b_{k} in terms of a_{k}.

Hint 1: It will be useful if you can plot $x(t)$ and $y(t)$ first.
Hint 2: You may need to combine more than one properties.

Question 2: [20\%, Work-out question, Learning Objectives 2, 3, 4, and 5] Consider the following discrete-time signal:

$$
\begin{equation*}
x[n]=e^{j 0.1 \pi n}+e^{j 0.2 \pi n} \tag{3}
\end{equation*}
$$

and a DT-LTI system with the following impulse response:

$$
h[n]= \begin{cases}e^{-n} & \text { if } 0 \leq n \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

1. [8\%] Find the DTFS of $x[n]$.
2. $[12 \%]$ Let $y[n]$ denote the output of this LTI system when the input is $x[n]$. Find the DTFS of $y[n]$.
Hint 1: You may need the following formula:

$$
\begin{equation*}
\sum_{k=1}^{\infty} a r^{k-1}=\frac{a}{1-r} \text { if }|r|<1 . \tag{5}
\end{equation*}
$$

Hint 2: If you do not know the answer to the previous subquestion, you can assume the following:
(a) The period of $x[n]$ is 100 .
(b) The DTFS coefficients of $x[n]$ are

$$
a_{k}= \begin{cases}k & \text { if } 1 \leq k \leq 20 \tag{6}\\ 0 & \text { if } 21 \leq k \leq 100\end{cases}
$$

You will receive full mark if your answer is correct. However, please indicately explicitly whether you are solving the original question or you are solving the alternative questio.

Question 3: [14\%, Work-out question, Learning Objectives 4 and 5] Consider a continuous time signal $x(t)$:

$$
x(t)=\left\{\begin{array}{ll}
2+t & \text { if }-2 \leq t<2 \tag{7}\\
4 & \text { if } 2 \leq t<5 \\
0 & \text { otherwise }
\end{array} .\right.
$$

Let $X(j \omega)$ denote the CTFT of $x(t)$.

1. [6\%] Find the value of $X(j 0)$.
2. [8\%] Find the value of $\int_{-\infty}^{\infty} X(j \omega) e^{j 2 \omega} d \omega$.

Question 4: $[15 \%$, Work-out question, Learning Objectives 2, 3, 4 and 5] Consider the following signal $x(t)$

$$
\begin{equation*}
x(t)=\left(\frac{\sin (4 t) \sin (5 t)}{(\pi t)^{2}}\right) * \frac{\sin (6 t)}{\pi t} \tag{8}
\end{equation*}
$$

where the notation "*" means convolution. Find the corresponding Fourier transform $X(j \omega)$ and plot it for the range of $-12<\omega<12$.

Question 5: [16\%, Work-out question, Learning Objectives 4, 5, and 6] Consider a discrete time signal

$$
\begin{equation*}
x[n]=\sum_{k=0}^{1}(k+1) e^{j 2.5 k \pi n} \tag{9}
\end{equation*}
$$

Find the corresponding DTFT $X\left(e^{j \omega}\right)$ and plot it for the range of $-2 \pi<\omega<2 \pi$.

Question 6: [23\%, Learning Objectives 3, 4, 5, and 6] Consider the following AM transmission system. The input signal is $x(t)=\frac{\sin (t)}{\pi t}$. We first multiply $x(t)$ by $\cos (4 t)$. That is,

$$
y(t)=x(t) \cdot \cos (4 t) .
$$

The transmitter then transmits signal $y(t)$ through the antenna.
At the receiver side, we first multiply $y(t)$ by $2 \sin (4 t)$. That is $z(t)=y(t) \cdot 2 \sin (4 t)$ and then pass $z(t)$ through a low pass filter with cutoff frequency $W=7.5 \mathrm{rad} / \mathrm{sec}$. Denote the final output by $w(t)=z(t) * h_{\mathrm{LPF}}(t)$.

1. [18\%] Plot the CTFT $W(j \omega)$ of $w(t)$ for the range of $-10<\omega<10$.
2. [5\%] Find the expression of $w(t)$.

Hint 1: This is a more advanced question. Please work on it after you have finished other questions.

Hint 2: If you do not know how to solve this question, you can write down the transmitter and receiver diagrams of AM-DSB when (i) filtering a radio signal to make it of bandwidth 10 k Hz ; (ii) then sending the filtered signal using carrier frequency 950 kHz ; and (iii) the receiver needs to demodulate the original signal. You need to carefully mark all the frequency parameters used in your scheme with the correct unit. If your answer is correct, you will receive 13 points.

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X(j \omega) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10^{*} could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k}^{*} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=(N)} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Rumning Sum	$\sum_{k=-\infty}^{n} x[k]\binom{$ finite valued and periodic only }{ if $a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=\mathcal{O}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
Parseval's Relation for Periodic Signals$\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$		

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Parseval's Relation for Aperiodic Signals

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|X(j \omega)|^{2} d \omega
$$

FORM PAIRS

, we have consid. re summarized in which each prop. important Fourier upply the tools of
transform
; ω)
, $-\theta) d \theta$
$\cdot(0) \delta(\omega)$

$-j \omega)$

$\mathcal{P}_{\mathcal{e}}\{X(-j \omega)\}$
$-\mathscr{S}_{n}\{X(-j \omega)\}$
$-j \omega) \mid$
$\lceil X(-j \omega)$
ven
tginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0 j} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0}{ }^{\prime}}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$\begin{aligned} & a_{1}=1 \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=a_{-1}=\frac{1}{2} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\sin \omega_{0} t$	$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=-a_{-1}=\frac{1}{2 j} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$x(t)=1$	$2 \pi \delta(\omega)$	$a_{0}=1, \quad a_{k}=0, k \neq 0$ (this is the Fourier series representation for)
Periodic square wave $x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & T_{1}<\|t\| \leq \frac{T}{2}\end{cases}$ and $x(t+T)=x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right)$	$\frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)$	$a_{k}=\frac{1}{T}$ for all k
$x(t) \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \omega T_{1}}{\omega}$	-
$\frac{\sin W t}{\pi t}$	$X(j \omega)= \begin{cases}1, & \|\omega\|<W \\ 0, & \|\omega\|>W\end{cases}$	-
$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$e^{-a t} u(t), \mathcal{R} e\{a\}>0$	$\frac{1}{a+j \omega}$	-
$t e^{-a t} u(t), \mathcal{R e}\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\begin{aligned} & \frac{n^{n-1}}{(n-1)!} e^{-a t} u(t), \\ & \mathfrak{Q}\{a\}>0 \end{aligned}$	$\frac{1}{(a+j \omega)^{n}}$	-

table 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		$x[n]$	$X\left(e^{j \omega}\right)$ periodic with
		$y[n]$	$\left.Y\left(e^{j \omega}\right)\right\}$ period 2π
5.3.2	Linearity	$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$
5.3.3	Time Shifting	$x\left[n-n_{0}\right]$	$e^{-j \omega n_{0}} X\left(e^{j \omega}\right)$
5.3.3	Frequency Shifting	$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$
5.3.4	Conjugation	$x^{*}[n]$	$X^{*}\left(e^{-j \omega}\right)$
5.3.6	Time Reversal	$x[-n]$	$X\left(e^{-j \omega}\right)$
5.3.7	Time Expansion	$x_{(k)}[n]= \begin{cases}x[n / k], & \text { if } n=\text { multiple of } k \\ 0, & \text { if } n \neq \text { multiple of } k\end{cases}$	$X\left(e^{j k \omega}\right)$
5.4	Convolution	$x[n] * y[n]$	$X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)$
5.5	Multiplication	$x[n] y[n]$	$\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$
5.3.5	Differencing in Time	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) X\left(e^{j \omega}\right)$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j \omega}} X\left(e^{j \omega}\right)$
5.3.8	Differentiation in Frequency	$n \times[n]$	$\begin{aligned} & +\pi X\left(e^{j 0}\right) \sum_{k=-\infty}^{+\infty} \delta(\omega-2 \pi k) \\ & j \frac{d X\left(e^{j \omega}\right)}{d \omega} \end{aligned}$
5.3.4	Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right) \\ \operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}=\mathcal{R e}^{-j}\left\{X\left(e^{-j \omega}\right)\right\} \\ \mathscr{I}_{n z\{ }\left\{X\left(e^{j \omega}\right)\right\}=-\mathcal{I}_{m}\left\{X\left(e^{-j \omega}\right)\right\} \\ \left\|X\left(e^{j \omega}\right)\right\|=\left\|X\left(e^{-j \omega}\right)\right\| \\ \Varangle X\left(e^{j \omega}\right)=-\Varangle X\left(e^{-j \omega}\right) \end{array}\right.$
5.3.4	Symmetry for Real, Even Signals	$x[n]$ real an even	$X\left(e^{j \omega}\right)$ real and even .
5.3.4	Symmetry for Real, Odd Signals	$x[n]$ real and odd	$X\left(e^{j \omega}\right)$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$\begin{array}{ll} x_{e}[n]=\mathcal{E v}\{x[n]\} & {[x[n] \text { real }]} \\ x_{o}[n]=\operatorname{dd}\{x[n]\} & {[x[n] \text { real }]} \end{array}$	
5.3.9	Parseval's Re $\sum_{n=-\infty}^{+\infty}\|x[n]\|$	ation for Aperiodic Signals $=\frac{1}{2 \pi} \int_{2 \pi}\left\|X\left(e^{j \omega}\right)\right\|^{2} d \omega$	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_{k} of a periodic signal $x[n]$ are themselves a periodic sequence, we can expand the sequence a_{k} in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_{k} are the values of $(1 / N) x[-n]$ (i.e., are proportional to the values of the original

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_{k} e^{j k(2 n / N) n}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	a_{k}
$e^{j \omega_{0} n}$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta\left(\omega-\omega_{0}-2 \pi l\right)$	(a) $\begin{aligned} & \omega_{0}=\frac{2 \pi m}{N} \\ & a_{k}= \begin{cases}1, & k=m, m \pm N, m \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_{0} n$	$\pi \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)+\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} \omega_{0} & =\frac{2 \pi m}{N} \\ a_{k} & = \begin{cases}\frac{1}{2}, & k= \pm m, \pm m \pm N, \pm m \pm 2 N \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_{0} n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)-\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} & \omega_{0}\end{aligned} \quad=\frac{2 \pi r}{N} \quad \begin{aligned} \frac{1}{2 j}, & k=r, r \pm N, r \pm 2 N, \ldots,\end{aligned}, \begin{aligned}-\frac{1}{2 j}, & k=-r ;-r \pm N,-r \pm 2 N \\ 0, & \text { otherwise }\end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$x[n]=1$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta(\omega-2 \pi l)$	$a_{k}= \begin{cases}1, & k=0, \pm N, \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases}$
Periodic square wave $x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & N_{1}<\|n\| \leq N / 2\end{cases}$ and $x[n+N]=x[n]$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$\begin{aligned} & a_{k}=\frac{\sin \left[(2 \pi k / N)\left(N_{1}+\frac{1}{2}\right)\right]}{N \sin [2 \pi k / 2 N]}, k \neq 0, \pm N, \pm 2 N, \\ & a_{k}=\frac{2 N_{1}+1}{N}, k=0, \pm N, \pm 2 N, \ldots \end{aligned}$
$\sum_{k=-\infty}^{+\infty} \delta[n-k N]$	$\frac{2 \pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$a_{k}=\frac{1}{N}$ for all k
$a^{n} u[n], \quad\|a\|<1$	$\frac{1}{1-a e^{-j \omega}}$	-
$x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & \|n\|>N_{1}\end{cases}$	$\frac{\sin \left[\omega\left(N_{1}+\frac{1}{2}\right)\right]}{\sin (\omega / 2)}$	-
$\begin{aligned} & \frac{\sin W n}{\pi n}=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right) \\ & 0<W<\pi \end{aligned}$	$\begin{aligned} & X(\omega)= \begin{cases}1, & 0 \leq\|\omega\| \leq W \\ 0, & W<\|\omega\| \leq \pi\end{cases} \\ & X(\omega) \text { periodic with period } 2 \pi \end{aligned}$	-
$\delta[n]$	1	-
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{+\infty} \pi \delta(\omega-2 \pi k)$	$-$
$\delta\left[n-n_{0}\right]$	$e^{-j \omega \mu_{0}}$	
$(n+1) a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$	
$\frac{(n+r-1)!}{n!(r-1)!} a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{r}}$	

