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Question 1: [20%, Work-out question]

1. [1%] What does the acronym AM-DSB stand for?

2. [1%)] What is AM asynchronous demodulation? You can either describe how to
implement an AM asynchronous demodulator or you can describe the difference
between an asynchronous versus a synchronous demodulator. You will receive full
points either way.

Prof. Wang wanted to transmit an AM-SSB signal. To that end, he wrote the following
MATLAB code.

% Initialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read two different .wav files

[x1, f_sample, N]=audioread(’xl.wav’);
x1=x1’;

[x2, f_sample, N]=audioread(’x2.wav’);
x2=x2";

% Step 0: Initialize several parameters
W_1="7777;

W_2=pi*3000;

W_3=pi*6000;

W_4=7777;

W_5=7777;

W_6=pi*x12000;

W_7=pi*6000;

% Step 1: Make the signals band-limited.
h=1/(pi*t) .*(sin(W_1%t));
x1_new=ece301lconv(xl, h);
x2_new=ece301conv(x2, h);

% Step 2: Multiply x1_new and x2_new with a sinusoidal wave.
x1_h=x1_new.*sin(W_2*t);
x2_h=x2_new.*sin(W_3*t);

% Step 3: Keep one of the two side bands
h_one=1/(pix*t) .*(sin(W_4*t)-sin(W_5%t));



h_two=1/(pi*t) .*(sin(W_6*t)-sin(W_7*t));
x1_sb=ece301lconv(x1_h, h_one);
x2_sb=ece301conv(x2_h, h_two);

% Step 4: Create the transmitted signal
y=x1_sb+x2_sb;
audiowrite(’y.wav’, y, f_sample);

3.
4.

[1.5%] What is the carrier frequency (Hz) of the signal x1_new?

[1.5%] For the second signal x2 new, is this AM-SSB transmitting an upper-side-
band signal or a lower-side-band signal?

[1.5%] What should the values of W_4 and W_5 be in the MATLAB code, if we
decide to use a lower-side-band transmission for the first signal x1_new?

[1.5%] What should the values of W_4 and W_5 be in the MATLAB code, if we
decide to use an upper-side-band transmission for the first signal x1_new?

[2%] Continue from the previous sub-question. Suppose upper-side-band transmis-
sion is used for the first signal x1_ new. To ensure that the receiver side can have
the best possible quality, it is important for the transmitter to choose the largest
W_1 value when possible. What is the largest W_1 value that can be used without
significantly degrading the quality of any of the two transmitted signals?



Knowing that Prof. Wang decided to use an upper-side-band transmission for the first
signal x1_new and he chose the W_1 value to be W; = 2000 x . He then used the code in
the previous page to generate the “y.wav” file. A student tried to demodulate the output
waveform “y.wav” by the following code.

% Initialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read the .wav files
ly, f_sample, N]=audioread(’y.wav’);

y=y’;

% Initialize several parameters
W_8=7777;
W_9="7777;
W_10=7777;

"2*" should be
changed to "4*"

% Create/a low-pass filter.
h_M=1/(pi*t) .*(sin(W_8%t));

"2*" should be

% demppdulate signal 1 o
changed to "4*

y1=2%y . *sin (pi*W_9%t
x1_hat=ece301lconv(¥1,h_M);

sound (x1_hatsf_sample)

% demodulate signal 2
y2=2%y . *sin(pi*W_10%t) ;
x2_hat=ece301conv(y2,h_M);

sound (x2_hat,f_sample)

8. [2%] Continue from the previous questions. What should the value of W_8 be in the
MATLAB code? When answering this question, please assume that the first radio
x1_new was transmitted using the upper side-band and Wy = 2000 x 7.

9. [2%] The student did not know how to choose the Wy value. Instead, he/she played
with different nine choices: i.e., Wy = 0, 1000, 2000, 3000, 4000, 5000, 6000, 7000,
or 8000. One of them gave him/her perfect results. Namely, when playing x1_hat,
the resulting sound is identical to playing the original signal x1_new.


chihw
Callout
"2*" should be changed to "4*"

chihw
Callout
"2*" should be changed to "4*"


10.

11.

12.

Question: Which choice of Wy is the one that gave the perfect result?

[2%] The student did not know how to choose the Wi value. Instead, he/she played
with different nine choices: i.e., Wi, = 0, 1000, 2000, 3000, 4000, 5000, 6000, 7000,
or 8000. Unfortunately, none of these nine choices gave him/her the perfect result
when playing x2_hat. That is, when playing x2_hat, the quality of the resulting
sound is always significantly worse than playing the original signal x2_new.

Question: Please use one sentence to describe what kind of sound quality problem
that the student is experiencing when playing x2_hat?

[3%] It turns out that some important commands are missing when the student
wrote the demodulation MATLAB code.

Question: What are the missing commands when demodulating x2_new? Please
clearly state which part of the code you would like to modify or add new commands.

Hint: If you do not know how to write the MATLAB code, you can also describe
by words what “function block” is missing in the above MATLAB code. You will
receive 2 points if your answer is correct.

[1%] In addition to adding new commands, the 1y, value also needs to be carefully
chosen.
Question: What is the value of Wi needed for perfect demodulation?

Hint: If you do not know the answers of Q1.3 to Q1.12, please simply draw the
AMSSB modulation and demodulation diagrams and mark carefully all the param-
eter values. You will receive 11 points for Q1.3 to Q1.12.









Question 2: [9%, Work-out question]

1. [6%] Consider a discrete time signal z[n|

3 ifn=1orn=-1
z[n] =<0 ifn=0orn=2 (1)
periodic with period 4

Find the DTFS of z[n] and plot the DTFES coefficients aj, for the range of k = 0 to
3.

2. [3%] Find the DTFT of x[n] and plot the DTFT X (e?*) for the range of —2.75m <
w < 2.757.

Hint: If you do not know the answer to the previous subquestion, you can assume
ap =2 sin(%”). You will receive full credit if your answer is correct.












Question 3: [12%, Work-out question]

1.

[2%] Suppose w(t) = sin(3t) 4 cos(5t). Question: According to the sampling theo-
rem, what is the smallest sampling frequency (Hz) needed in order to for perfectly
reconstruct w(t)?

[1.5%)] Consider the following continuous time signal

2 sin(7t)

o(t) = 2220 (2)

7t

Plot z(t) for the range of —4 < t < 4.
[1.5%] Plot the CTFT X (jw) of x(¢) for the range of —5m < w < 5.

[3%)] If we perform impulse train sampling on z(¢) with the sampling frequency 2Hz
and denote the impulse train sampled signal by z,(¢). Plot its CTFT X, (jw) for
the range of —bm < w < 5.

Hint: If you do not know the answer to the previous sub-questions, please write
down the relationship between X (jw) and X,(jw). You will receive 1.5 points if
your answer is correct.

[3%] We use Zpana(t) to represent the reconstructed signal using “band-limited re-
construction”. Plot xpanq(t) for the range of —4 <t < 4.

Hint: if you do not know the answer of z[n], you can assume that x[n] = d[n —
6] — d[n + 6] and the sampling frequency is 2Hz. You will receive full points if your
answer is correct.

[1%] Write down the exact expression of Zpand(t).












Question 4: [10%, Work-out question]
Consider a continuous time signal

t+2 if —2<t<0
r(t)=<2—-t f0<t<?2 (3)

0 otherwise

1. [3%] We sample z(t) with the sampling frequency 2Hz and denote the sampled
values by x[n]. Plot z[n| for the range of —5 <n <5.

2. [2%)] We use xy,(t) to represent the reconstructed signal using “linear interpolation”.
Plot xy, () for the range of —4 < ¢ < 4.

3. [5%)] Suppose we pass x[n| through a discrete-time LTI system with h[n] = d[n] +
d[n — 4]. Denote the new discrete-time array by y[n]. We then again apply linear
interpolation to y[n] and construct the corresponding yy,(t). Plot yu,(t) for the
range of —4 <t < 4.












Question 5: [10%, Work-out question]
Consider the following continuous time signals

2 if—-2<t<?2
z(t) = .
0 otherwise

3 if —3<t<3
h(t)=<6(t—8) if3<t<10
0 otherwise

1. [2%] Plot h(t) for the range of —10 <t < 10.

2. [8%] Plot the signal y(t) = x(t) * h(t) for the range of —10 < ¢ < 10.












Question 6: [14%, Work-out question]
Consider the differential equation.

2

() + 3500 + 250(0) = 22(0) ()

1. [7%] Find the impulse response h(t) and the corresponding frequency response
H(jw).
2. [7%)] Suppose the input is z(t) = 320, e/*=27_ Find the expression of y(t).

Hint 1: If you do not know the answer to the previous question, you can assume

. 2
that h(t) = (%) . You will receive full credit if your answer is correct.

Hint 2: There is no need to have a highly simplified answer. For example, your
answer can be something like (1 + 7)e/3 — (1 — 2j)e?>".












Question 7: [10%, Work-out question]

1. [5%)] Consider the following discrete time signal.

0 otherwise |

y[n]:{1 ifn >3 ™

Derive the Z-transform expression of y[n] and derive the corresponding region of
convergence. Please carefully write down your reasonings. If you use the table
without explanation, then you will receive 3 points instead.

Hint: You may need the following formulas

Zarkfl: 1ir if |r] <1 (8)

k=1

iakrk_l =% <1 9)
(1—r)?

k=1

2. [2%] Continue from the previous question. Plot the region of convergence of y[n| in
the complex plane. (Le., the horizontal axis is Re(z) and the vertical axis is Im(z).)

3. [3%] Consider the following discrete time signal.

2 if 10 <n <59
1 if 60 < n <

o] = e (10)
0 if 80 <n <109

periodic with period 100

Let a; denote the DTFS of z[n]. Find the value of 3.7 aj(—1)*












Question 8: [15%, Multiple-choice question] Consider two signals

~Jsin(2t) if sin(t) >0
() = {0 if sin(t) <0 (1)
and
ha[n] = (14 7) " sin(0.75mn) + (1%) sin(0.757|n|) (12)

1. [1.25%)] Is hq(t) periodic?

2. [1.25%)] Is hg[n| periodic?

3. [1.25%)] Is hy(t) even or odd or neither?
4. [1.25%] Is he[n] even or odd or neither?
5. [1.25%] Is hq(t) of finite energy?

6. [1.25%)] Is ho[n] of finite energy?

Suppose the above two signals are also the impulse responses of two LTI systems:
System 1 and System 2, respectively.

1. [1.25%] Is System 1 memoryless?
2. [1.25%)] Is System 2 memoryless?
3. [1.25%] Is System 1 causal?
4. [1.25%] Is System 2 causal?
5. [1.25%)] Is System 1 stable?

6. [1.25%)] Is System 2 stable?






Discrete-time Fourier series

— Z akejk(Qﬂ/N)n

ap = N Z 6 —jk(2m/N)n

Continuous-time Fourier series

o0

:L“(t): Z akejk(Qw/T)t

k=—o00

— _/ 7yk (27/T) tdt

Continuous-time Fourier transform
1 o ) ot
z(t) = — X(jw)e’ dw
2 J_ o
X(jw) :/ x(t)e ¥t dt

[e.o]

Discrete-time Fourier transform

x[n] = Dy X (e*) e dw
X(e¥) = Z x[n)e 94"

Laplace transform
x(t) = ie"t /00 X (o + jw)e’ dw
2 .
X(s) = / 2ttt

7 transform

(10)

(11)

(12)
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TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES
S ———
Property Section Periodic Signal Fourier Series Coefficients
x(f)) Periodic with period T and ay
¥(t) fundamental frequency wo = 2T by
Linearity 351 Ax(®) + By(®) Aa; + Bb;
Time Shifting 352 x(t — to) ape ol = age ey
Frequency Shifting eiMant x(1) = /M (27/T) x(2) Q-
Conjugation 356 x*(t) ay
Time Reversal 3.5.3 x(—1t) a-
Time Scaling 3.54 x(at), >0 (periodic with period T/a) ax
Periodic Convolution J x(T)y(t — Td7 Taxby
T
4o
Multiplication 3.5.5 x(0)y® Z aiby-
J= -
. e dx(t . 2
Differentiation d(t) koot = JkTW a
t it 1\ d .
Integration J x(H) dt(ﬁr{1 © .va ved fm _l_ ar = _l___
o periodic only if a0 = 0) Jkawo jkQ2mIT)
ap = aik
Refar} = Relai}
Conjugate Symmetry for 356 x(¢) real Imiar} = —dmia_y)
Real Signals laxl = lai ~
Yay = —Xa-
Real and Even Signals 35.6 x(t) real and even ay real and even ;
Real and Odd Signals 35.6 x(7) real and odd ay, purely imaginary
Even-Odd Decomposition {xe(t) = &v{x(n)} [x(r) real] Refayt
of Real Signals x,(1) = Od{x(0} [x(p) real] jImiat
Pparseval’s Relation for Periodic Signals
1 I
3| opar = >l
three examples, we illustrate this. The last example in this section then demons
d to characterize the signal in great detail.

propetties of a signal can be use

Example 3.6

Consider the signal g(z) with a fundamental period of

. could determine the Fourier s
tion (3.39). Instead,
wave x(f) in Example
T[ = 1,

3.5. Referring to that example,

g®) = x(t -1~ 1/2.

eries representation of g(2) direct! :
we will use the relationship of g(r) to the symumetric P&

4, shown in Figure
1y from the ana

we see that, with
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Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(¢),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property

Periodic Signal

Fourier Series Coefficients

Time Shifting
‘Frequency Shifting
Conjugation

Time Reversal

Time Scaling

eriodic Convolution

x[n] } Periodic with period N and
y[n] | fundamental frequency wo = 27/N

Ax[n] + By[n]

x[n = ny]
ejM(Z-n'/N)nx[n]

x"[n]
x[~n]
x[n/m], if n is a multiple of m
x(m) [n] = . . .
0, if n is not a multiple of m
(periodic with period mN)

> xlrlyln—r]

r=(N)

x[n]yln]

x[n] = x[n - 1]

Z x[K] (ﬁmte valued and periodic only)
e ifay =0

x[n] real

x[n] real and even
x[n] real and odd

{ xe[n] = &v{x[n])} [x[n] real]
x,[n] = Od{x[n]} [x[n]real]

Parseval’s Relation for Periodic Signals

¥ S P = S faf

n=(N) k=(N)

ay ] Periodic with
period N

a e~ ik@miNm
af- M
A
a—i

1  (viewed as periodic
m (with period mN )

Nakb,;

Z aibe;

1=(N)
(1 —- e—jk(ZvrIN))ak

1
((1 — e~ JkETIN)y )a"
ay = aik
Refa,} = Refa_y}
Imlay} = —Imla_}
la] = la-|
Lay = —Ya_;
ay, real and even
a, purely imaginary and odd
Gefa,}
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4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consi
ered some of the important properties of the Fourier transform. These are summarized
Table 4.1, in which we have also indicated the section of this chapter in which each pro
erty has been discussed. ~~

In Table 4.2, we have assembled a list of many of the basic and important Four
transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section Property Aperiodic signal Fourier transform k
x() X(jw)
¥ Y(jw)
43.1 Linearity ax(®) + by(® aX(jw) + b¥( jo)
432 Time Shifting x(t — 1) e i X(jw)
43.6 Frequency Shifting el x(t) X(jl@ — wo))
433 Conjugation x'(®) X (—jw)
43.5 Time Reversal x(—1) X(—jw)
435 Time and Frequency x(at) —1— (B—)
. la"\ a
Scaling
4.4 Convolution x(8) * y(t) X( jwﬂjq))’
45 Multiplication Xy 2—‘1—,[“&0 B)Y(j(w — O)d6
434 Differentiation in Time g;x(t) joX(jo)
t
434 Integration J x(r)dt J—,l(;X( jw) + 7X(0)86(w)
43.6 Differentiation in tx(t) j d—d—X (jow)
Frequency @
X(jw) = X"(~jo)
Re{X(jw)} = RelX(
433 Conjugate Symmetry x(t) real ImiX(jw)} = ~ 9
for Real Signals lX(jw)l _ lX(—jw)l ‘
LX(jw) = — X
433 Symmetry for Realand  x(f) real and even X(jw) real and even
Even Signals .
433 Symmetry for Realand  x(?) real and odd X(jw) purely imagipary
Odd Signals

%) = Svix(®}  [x() reall Re{X(jw)}

433 Even-Odd Decompo- (f) = Od{x(®) () real] )

gition for Real Sig-

437 Parseval’s Relation for Aperiodic Signals
+oo 1 +eo
200 o Y
[ixopar = 5| KGRl
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y We thVe COHSiCL

Fourier series coefficients

T€ summarizeg in Signal Fourier transform (if periodic)
Whlch eaCh T b o
prop. Z ageltn 27 Z ad(w — kwg) a,
. F= o P
tmportant Fourje,
1pPly the tools of gJwut 2m8(w — wy) a; = 1
a; = 0, otherwise
P 8(w ~ wo) + B(w + 1= =y
“transform coswot (o(@ ~ o) (@ +wo)l a, = 0, otherwise
h\
!
i m a = —a., = 5
t —[6(w — wg) — §(w + 2
Sinwy j[ (w — wp) (@ + wp)] a = 0, otherwise
;.)_ ........ a=1 a=0 k=0
@ x(n =1 27 6(w) this is the Fourier series representation for
any choice of T > 0
Periodic square wave ]
p=|b M=<D &= 2 sin kwoT T kooTi\ _ sin kwoT ‘
W0 <=1 S 2T g g,y @l sinc( 20 '): it LL
“— k T T km
and k=-e
x(t+T) = x(2)
)y —@)de
it 2m <5 27k 1
"Zwa(: - nT) 7,;“,8(‘0 - —T—) & = = forall k
(0)d(w) 1, <, 2sinwT),
x(®) e —
0, l>T, )

. sin Wt . L |of<w :
@) e X(jo) = [O :w: >W - :
Re{X (- jow)} » \
—Im{X(— jw)} 80 1 _

- jo)| '
X(—jw) u(®) - b jiw + 7 8(w) —
ven
\ginary and odd 8(t ~ o) e -
1
—at p—
e “u(t), Re{a} > 0 it e
te % u(t), Refa} > 0 —1— — t
’ (a+ jw) "
o _“<,l:1l)y e~ u(t), _1__ .
Refa} > 0 (a+ jo)
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TABLE 5.1 PROPERTIES OF THE DiSCRETE-TIME FOURIER TRANSFORM
Section  Property Aperiodic Signal Fourier Transform
x[n] X(ef‘")} periodic with
yin] Y(e/)]| period 27
5.3.2 Linearity ax{n] + by[n] aX(e’?) + bY (/)
53.3 Time Shifting xn — no) el x (o)
53.3 Frequency Shifting e/*" x(n] X(e/w-w0)y
534 Conjugation x'[n] X'(e™ ™)
5.3.6 Time Reversal x[—n] X(e )
. . _ [ x[n/k}, if n = multiple of & ™
53.7 Time Expansion Xwlnl = {0’ if n » multiple of k X(e*)
54 Convolution x[n] * y[n] X(e/)y(e™)
5.5 Multiplication x{nlyln] % J X(e®)Y(e")do
2
5.3.5 Differencing in Time x[n] = x[n—1] (1 — e )X (')
. - 1 o
53.5 Accumulation kzw x[k] =% X(e*)
400
+aX(e™) > 8(w — 2mk) ‘
538 Differentiation in Frequency  nx{n] 'd};(:)jw) !
X(e) = X (&™) |
Re{X(e/)} = Re{X(e )}
534 Conjugate Symmetry for x[n] real Im{X(e/*)} = —Im{X(e =)}
Real Slgnals IX(ef‘”)] = IX(e-jw)l
LX(e/*) = —4X (e )
534 Symmetry for Real, Even x[n] real an even X(e’*) real and even
Signals T
534 Symmetry for Real, Odd x[n] real and odd X(e/*) purely imaginary and f
Signals odd
534 Even-odd Decomposition x.[n] = &v{x[n]} [x[n] real] Re{X(e™)} 5
of Real Signals x,[n] = Od{x[n]} [x[n] real] jIm{X(e*)}
539 Parseval’s Relation for Aperiodic Signals

n=—o

400 1 )
S bl = o [P

a duality relationship between the discrete-time Fourier transform and the continuous-time

Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence a; in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-
quence a;, are the values of (1/N)x[—n] (i.e., are proportional to the values of the original




TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal

Fourier Transform

Fourier Series Coefficients (if periodic)

Z akejk(ZHIN)n
k=(N)

+
2ar Z akS(w - 2_;Vr_k)

k= —co

ag

eJoott

ro
> 8w —wg — 27l)

=—w

(a) =N
, k=mmxNmx2N,
0, otherwise
irrational = The signal is aperiodic

coswohn

™ Zm: {8(w — wp — 2ml) + 8(w + wy — 20}

[

- 2w
1
5
0, otherwise

irrational > The signal is aperiodic

k=xmzm=zN tm+2N.

sinwon

4o
% S (8w — wo — 27D — 8(w + wp = 27D}
I —co

2arr

N
s k=rrENrEoN.
—9p k= -norEN-rrap,
0, otherwise
irrational > The signal is aperiodic

x{n] = 1

oo
21 > 8w —2ml)

I=—o

1, k=0 %N £2N,...

0, otherwise

Periodic square wave
1, ]nl =N 1

x[n] =
0, N, <|n =NI2

and
x{n+ N] = x[n]

oo
21 Z apd (w - ?)

= —c

sin{Qak/NYN| + )]
N sin[27k/2N}

2N+ 1
N

, k#0,£N, 22N, .

, k=0,ZN, £2N,...

atuln], o <1

1~ aeJ®

L, la =N

x[n]=
(] 0, |n|> Ny

sinfw(N) + 5)]
sin{w/2)

smH’/n — W sinc (Wn)

ah T T

O<W<m

, 0=<loj=W

0, W<l ==
X(w) periodic with period 27

X(w) =

6[n}

1

uln]

4o
1—:%7“—) + Z 78w — 2mk)
k=—o

8[n — ngl

g“l‘“’"O

(n+ Da'uln], la <1

-
(I — ae~jo)?

(n+r—1!

20— D! laf <1

atuln),

i
(1 — ae—Jo)y
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TABLE 10.1

Section Property

105.1 Linearity
10.5.2 Time shifting
10.5.3 Scaling in the z-domain
10.5.4 Time reversal
10.5.5 Time expansion
10.5.6 Conjugation
10.5.7 Convolution
10.5.7 First difference
10.5.7 Accumulation
10.5.8 Differentiation

in the z-domain
10.5.9

PROPERTIES OF THE Z-TRANSFORM

Signal

z-Transform

x[n] X(@2)

x1[n} X,(2)

x{n) X(2)

axi[n] + bxanl aX(2) + bX2(2)

x[n — no) 77X (2)

el x[n] X(e ¥02)

zax[n] X A,Iov

ax[n] X(a'2)

x[—n] Xz

xwinl = * Mmg M M HM for some integer 7 X5

x*[n] X"(z)

x[n) = %201 X1(2)X2(2)

xm]— xin— 1 1 - z7HX(@)

< n !

> e XLK] 1= NLNA@

nxfnl -2z &MANNV
Tnitial Value Theorem

If xn] = Oforn < 0, then

%[0 = lim X(z)

ROC

At least the intersection of Ri and R

R, except for the possible addition or
deletion of the origin

R

No%

Scaled version of R (i.e., lalR = the
set of points {alz} for z in R)

Inverted R (i.e., R~ = the set of
points z~!, where z is in R)

RY* (ie., the set of points 7V, where
z1is in R)

R

At least the intersection of Ry and Ry

At least the intersection of R and
|zl >0

At least the intersection of R and
lZ>1

7%
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TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal Transform ROC
1. 8[n] 1 Allz
1

2. uln] T |2t > 1

3. —u[-n—1] ?127—1 |z} < 1

4, 8[n — m] " All z, except
0 (if m>0)or
o (if m < Q)

5. aulr] L 1l > lof

1 —az™!

1

6 —aul=n—1] = le] <l
n g aZ7l
7. nauln) m 2| > ||
-1
az
C—no"ul—-n — - <
8. —na"u[-n—-1] 0 a1y 2] < al
1 = [coswg]z™!
9. [cos wonluln] [~ Feosale | 727 |z} > 1
. [sinwplz™'

. >
10. [sinwon]u{n] T Deosmolz T+ 22 2] >1
11. [r" cos wonluln] L= [reos wole”! lz| > r

' 0 1 - [2rcoswyjz! + 12772 z

: -1
12. [r" sin won]uln] [rsinwolz |zl > r

1= [2rcoswglz! + r2z2

10.7.1 Causality

A causal LTI system has an impulse response k[n] that is zero for n < 0, and théref()m
right-sided. From Property 4 in Section 10.2 we then know that the ROC of H(z) is
exterior of a circle in the z-plane. For some systems, e.g., if h[n] = 8[n], so thatH Z
the ROC can extend all the way in to and possibly include the origin. Also, in gen
a right-sided impulse response, the ROC may or may not include infinity. For ex
if hfn] = 8[n + 1], then H(z) = z, which has a pole at infinity. However, as
Property 8 in Section 10.2, for a causal system the power series

H(z) = Z hin)z™"

does not include any positive powers of z. Consequently, the ROC lncludes mﬁ
marizing, we have the follow principle:

A discrete-time LTI system is causal if and only if the ROC of its syster
the exterior of a circle, including infinity.
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