Midterm \#2 of ECE301, Section 3 (CRN 17101-003)

8-9pm, Wednesday, October 11, 2017, EE 170.

1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and signature in the space provided on this page, NOW!
2. This is a closed book exam.
3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
4. Use the back of each page for rough work.
5. Neither calculators nor help sheets are allowed.

Name:
Student ID:

I certify that I have neither given nor received unauthorized aid on this exam.

Signature:

Date:

Question 1: $[11 \%$, Work-out question, Learning Objective 1] Consider a CT system with the input/output relationship being

$$
y(t)= \begin{cases}\int_{t-1}^{t} e^{-x(s)} d s & \text { if } x(t) \geq 0 \tag{1}\\ 0 & \text { if } x(t)<0\end{cases}
$$

Is this system time-invariant or not? Please carefully write down your reasons. A yes/no answer without reasons will not receive any point.

Question 2: [15\%, Work-out question, Learning Objectives 1, 2, and 3]
Consider the following CT system:

$$
\begin{equation*}
y(t)=\int_{s=-\infty}^{\infty}(U(s+1)+U(s-1)-2 U(s-2)) x(t-s) d s \tag{2}
\end{equation*}
$$

where $U(t)$ is the CT unit step signal.

1. [15\%] Find out the impulse response $h(t)$ of this system, and plot it for the range of $-4 \leq t \leq 4$.
Hint 1: If you do not know the answer to this sub-question, please write down the definition of "impulse response". You will receive 2 points if your answer is correct.

Question 3: [14\%, Work-out question, Learning Objectives 1, 2, and 3]
Consider $x(t)=\cos \left(0.6 \pi t+\frac{\pi}{4}\right)+\sin (0.3 \pi t)$. Find the Fourier series representation of $x(t)$.

Question 4: $[15 \%$, Work-out question, Learning Objectives 1, 2, 3, and 5]
Consider a DT LTI system with impulse response

$$
h[n]= \begin{cases}e^{-(n-101)} & \text { if } 101 \leq n \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

Find out the output $y[n]$ when the input $x[n]$ is

$$
\begin{equation*}
x[n]=e^{j n}+e^{j(1.1 \pi n)} \tag{4}
\end{equation*}
$$

Hint 1: You may need to use the following formulas: If $r \neq 1$, then we have

$$
\begin{equation*}
\sum_{k=1}^{K} a r^{k-1}=\frac{a\left(1-r^{K}\right)}{1-r} \tag{5}
\end{equation*}
$$

If $|r|<1$, then we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} a r^{k-1}=\frac{a}{1-r} . \tag{6}
\end{equation*}
$$

If $|r| \geq 1$, then we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} a r^{k-1} \text { does not exist. } \tag{7}
\end{equation*}
$$

Hint 2: You can leave your answer to be something like $\frac{e^{j 2 n}(1+j)}{(2-j)}$. There is no need to further simplify the expression.

Question 5: [25\%, Work-out question, Learning Objective 4]

1. [4\%] Consider a CT signal

$$
y(t)= \begin{cases}e^{-|t|} & \text { if }|t|<2 \tag{8}\\ y(t) \text { is periodic with period } 4 & \end{cases}
$$

Plot $y(t)$ for the range of $-4 \leq t \leq 4$.
2. [16\%] Continue from the previous sub-question. Find the Fourier series representation of $y(t)$.
3. [5\%] Consider another CT signal

$$
z(t)=\left\{\begin{array}{ll}
e^{t} & \text { if }-2 \leq t<0 \tag{9}\\
e^{-t} & \text { if } 0 \leq t<2 . \\
z(t) \text { is periodic with period } 4 &
\end{array} .\right.
$$

Suppose the Fourier series coefficients of $z(t)$ are denoted as c_{k}. Find the values of c_{0} and c_{1}.
Hint: If you do not know the answer to the previous sub-question, you can assume that the Fourier series coefficients of $y(t)$ are $b_{0}=\frac{2 T_{1}}{T}$ and $b_{k}=\frac{\sin \left(k \frac{2 \pi}{T} T_{1}\right)}{\pi k}$ with $T_{1}=0.4$ and $T=3$. Using the values of b_{k} will help you find the values of c_{0} and c_{1}. If your answer is correct, you will receive full credit for this sub-question.

Question 6: [20\%, Multiple Choices, Learning Objective 1]
The following questions are multiple-choice questions and there is no need to justify your answers. Consider the following two systems:

System 1: When the input is $x_{1}(t)$, the output is

$$
y_{1}(t)= \begin{cases}\int_{t-1}^{t} x_{1}(s) d s & \text { if } t>0 \tag{10}\\ 0 & \text { if } t \leq 0\end{cases}
$$

System 2: When the input is $x_{2}[n]$, the output is

$$
\begin{equation*}
y_{2}[n]=e^{-\int_{s=0}^{|x[n]|} s^{2} d s} \cos (2 n-1) \tag{11}
\end{equation*}
$$

Answer the following questions

1. [4\%, Learning Objective 1] Is System 1 memoryless? Is System 2 memoryless?
2. [4\%, Learning Objective 1] Is System 1 causal? Is System 2 causal?
3. [4\%, Learning Objective 1] Is System 1 stable? Is System 2 stable?
4. [4\%, Learning Objective 1] Is System 1 linear? Is System 2 linear?
5. [4\%, Learning Objective 1] Is System 1 time-invariant? Is System 2 time-invariant?

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X(j \omega) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10 . could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k}^{*} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=(N)} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Rumning Sum	$\sum_{k=-\infty}^{n} x[k]\binom{$ finite valued and periodic only }{ if $a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=\mathcal{O}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
Parseval's Relation for Periodic Signals$\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$		

