Midterm #2 of ECE301, Section 3 (CRN 17101-003) 8–9pm, Wednesday, October 11, 2017, EE 170.

- 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and signature in the space provided on this page, **NOW!**
- 2. This is a closed book exam.
- 3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
- 4. Use the back of each page for rough work.
- 5. Neither calculators nor help sheets are allowed.

Name:

Student ID:

I certify that I have neither given nor received unauthorized aid on this exam.

Signature:

Date:

 $Question\ 1:\ [11\%,\ Work-out\ question,\ Learning\ Objective\ 1]$ Consider a CT system with the input/output relationship being

$$y(t) = \begin{cases} \int_{t-1}^{t} e^{-x(s)} ds & \text{if } x(t) \ge 0\\ 0 & \text{if } x(t) < 0 \end{cases}$$
(1)

Is this system time-invariant or not? Please carefully write down your reasons. A yes/no answer without reasons will not receive any point.

Question 2: [15%, Work-out question, Learning Objectives 1, 2, and 3]

Consider the following CT system:

$$y(t) = \int_{s=-\infty}^{\infty} (U(s+1) + U(s-1) - 2U(s-2))x(t-s)ds$$
(2)

where U(t) is the CT unit step signal.

1. [15%] Find out the impulse response h(t) of this system, and plot it for the range of $-4 \le t \le 4$.

Hint 1: If you do not know the answer to this sub-question, please write down the definition of "impulse response". You will receive 2 points if your answer is correct.

Question 3: [14%, Work-out question, Learning Objectives 1, 2, and 3]

Consider $x(t) = \cos(0.6\pi t + \frac{\pi}{4}) + \sin(0.3\pi t)$. Find the Fourier series representation of x(t).

Question 4: [15%, Work-out question, Learning Objectives 1, 2, 3, and 5] Consider a DT LTI system with impulse response

$$h[n] = \begin{cases} e^{-(n-101)} & \text{if } 101 \le n \\ 0 & \text{otherwise} \end{cases}$$
(3)

Find out the output y[n] when the input x[n] is

$$x[n] = e^{jn} + e^{j(1.1\pi n)} \tag{4}$$

Hint 1: You may need to use the following formulas: If $r \neq 1$, then we have

$$\sum_{k=1}^{K} ar^{k-1} = \frac{a(1-r^K)}{1-r}.$$
(5)

If |r| < 1, then we have

$$\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}.$$
(6)

If $|r| \ge 1$, then we have

$$\sum_{k=1}^{\infty} a r^{k-1} \text{ does not exist.}$$
(7)

Hint 2: You can leave your answer to be something like $\frac{e^{j2n}(1+j)}{(2-j)}$. There is no need to further simplify the expression.

Question 5: [25%, Work-out question, Learning Objective 4]

1. [4%] Consider a CT signal

$$y(t) = \begin{cases} e^{-|t|} & \text{if } |t| < 2\\ y(t) \text{ is periodic with period 4} \end{cases}$$
(8)

Plot y(t) for the range of $-4 \le t \le 4$.

- 2. [16%] Continue from the previous sub-question. Find the Fourier series representation of y(t).
- 3. [5%] Consider another CT signal

$$z(t) = \begin{cases} e^t & \text{if } -2 \le t < 0\\ e^{-t} & \text{if } 0 \le t < 2\\ z(t) \text{ is periodic with period 4} \end{cases}$$
(9)

Suppose the Fourier series coefficients of z(t) are denoted as c_k . Find the values of c_0 and c_1 .

Hint: If you do not know the answer to the previous sub-question, you can assume that the Fourier series coefficients of y(t) are $b_0 = \frac{2T_1}{T}$ and $b_k = \frac{\sin(k\frac{2\pi}{T}T_1)}{\pi k}$ with $T_1 = 0.4$ and T = 3. Using the values of b_k will help you find the values of c_0 and c_1 . If your answer is correct, you will receive full credit for this sub-question.

Question 6: [20%, Multiple Choices, Learning Objective 1]

The following questions are multiple-choice questions and there is no need to justify your answers. Consider the following two systems:

System 1: When the input is $x_1(t)$, the output is

$$y_1(t) = \begin{cases} \int_{t-1}^t x_1(s) ds & \text{if } t > 0\\ 0 & \text{if } t \le 0 \end{cases}$$
(10)

System 2: When the input is $x_2[n]$, the output is

$$y_2[n] = e^{-\int_{s=0}^{|x||n|} s^2 ds} \cos(2n-1)$$
(11)

Answer the following questions

- 1. [4%, Learning Objective 1] Is System 1 memoryless? Is System 2 memoryless?
- 2. [4%, Learning Objective 1] Is System 1 causal? Is System 2 causal?
- 3. [4%, Learning Objective 1] Is System 1 stable? Is System 2 stable?
- 4. [4%, Learning Objective 1] Is System 1 linear? Is System 2 linear?
- 5. [4%, Learning Objective 1] Is System 1 time-invariant? Is System 2 time-invariant?

Discrete-time Fourier series

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} \tag{1}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n} \tag{2}$$

Continuous-time Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$
(3)

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt \tag{4}$$

Continuous-time Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
⁽⁵⁾

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
(6)

Discrete-time Fourier transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(j\omega) e^{j\omega n} d\omega$$
⁽⁷⁾

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(8)

Laplace transform

$$x(t) = \frac{1}{2\pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{j\omega t} d\omega$$
(9)

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
(10)

Z transform

$$x[n] = r^{n} \mathcal{F}^{-1}(X(re^{j\omega})) \tag{11}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
(12)

	Section	Periodic Signal	Fourier Series Coefficients
Property	Section		a_k
		x(t) Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	b_k
		Ax(t) + By(t)	$Aa_k + Bb_k$
Linearity	3.5.1	(4 4)	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Time Shifting	3.5.2	$x(t - t_0) e^{jM\omega_0 t} x(t) = e^{jM(2\pi/T)t} x(t)$	a_{k-M}
Frequency Shifting	3.5.6	$x^*(t)$	a^*_{-k}
Conjugation	3.5.0	r(-t)	a_{-k}
Time Reversal	3.5.5 3.5.4	x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k
Time Scaling	5.5.4		T a b
Periodic Convolution		$\int_{T} x(\tau) y(t-\tau) d\tau$	$Ta_k b_k$
1 chodie - Fill		51	$\sum_{n=1}^{+\infty} a b_{n-1}$
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Multiplication			277
		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$
Differentiation			
		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{ik\omega_0}\right)a_k = \left(\frac{1}{ik(2\pi/T)}\right)$
Integration		$\int_{-\infty} x(t) dt$ periodic only if $a_0 = 0$	$(j\kappa\omega_0)$ $(j\kappa(2\pi/1))$
e e			$\int a_k = a_{-k}^*$
			$(\operatorname{Re}\{a_k\} = \operatorname{Re}\{a_{-k}\}$
			$g_{m}\{a_{1}\} = -g_{m}\{a_{-1}\}$
Conjugate Symmetry for	3.5.6	x(t) real	$\begin{cases} \Re \cdot \{a_k\} = \Re \cdot \{a_{-k}\} \\ \mathfrak{G}_{\mathcal{M}}\{a_k\} = -\mathfrak{G}_{\mathcal{M}}\{a_{-k}\} \\ a_k = a_{-k} \\ \mathfrak{F}_{\mathcal{A}}a_k = -\mathfrak{F}_{\mathcal{A}}a_{-k} \end{cases}$
Real Signals			$ a_k - a_{-k} $
Real Dignalo			
		x(t) real and even	a_k real and even
Real and Even Signals	3.5.6	x(t) real and odd	a_k purely imaginary and o
Real and Odd Signals	3.5.6	$(x(t) - \mathcal{E}_{\infty}(x(t)) - [x(t) real]$	$\Re e\{a_k\}$
Even-Odd Decomposition		$\begin{cases} x_e(t) = \mathcal{E}_{\mathcal{V}}\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$j\mathfrak{Gm}\{a_k\}$
of Real Signals		$[x_o(t) = \bigcup \{x(t)\} \ [x(t) \ teat]$	
		Parseval's Relation for Periodic Signals	
		$\frac{1}{T}\int_{T} x(t) ^{2}dt = \sum_{k=-\infty}^{+\infty} a_{k} ^{2}$	

PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

three examples, we illustrate this. The last example in this section then demonstrates how properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g(t) with a fundamental period of 4, shown in Figure 3.10 is could determine the Figure 3.10 is could determine the Fourier series representation of g(t) directly from the analysis control (2.30). Instead, when a function of g(t) directly from the analysis control (2.30). tion (3.39). Instead, we will use the relationship of g(t) to the symmetric periodic space wave r(t) in Example 3.5. Before to the wave x(t) in Example 3.5. Referring to that example, we see that, with T = 4 at $T_{1} = 1$ $T_1 = 1,$

g(t) = x(t-1) - 1/2.

Sec. 3.7 Properties of Discrete-Time Fourier Series

Thus, in general, *none* of the finite partial sums in eq. (3.52) yield the exact values of x(t), and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2	PROPERTIES	0F	DISCRETE-TIME FOURIER SERIES
		U 1	

$y[n] \int \text{fundamental frequency } \omega_0 = 2\pi/N \qquad b_k \int p_k$ Linearity $Ax[n] + By[n] \qquad Aa_k + \\ x[n - n_0] \qquad a_{k}e^{-jk\ell}$ Prequency Shifting $e^{jM(2\pi/N)n}x[n] \qquad a_{k-M}$ a_{k-M} Conjugation $x^*[n] \qquad x^*[n] \qquad a_{k-M}$ $x[-n] \qquad a_{k-k}$ Time Reversal $x[-n] \qquad x[-n] \qquad a_{k-k}$ Time Scaling $x_{(m)}[n] = \begin{cases} x[n/m], \text{ if } n \text{ is a multiple of } m \\ 0, \text{ if } n \text{ is not a multiple of } m \\ (periodic with period mN) \end{cases}$ Periodic Convolution $\sum_{r=\langle N \rangle} x[r]y[n - r] \qquad Na_kb_k$ Multiplication $x[n]y[n] \qquad \sum_{r=\langle N \rangle} a_i b_i \\ (1 - e^{-ikk}) \qquad (1 - e^{-ikk}) \\ ($	Fourier Series Coefficient	
Time Shifting $x[n - n_0]$ $Ad_k + a_k e^{-jkt}$ Frequency Shifting $x[n - n_0]$ a_{km} Frequency Shifting $e^{jM(2\pi/N)n}x[n]$ a_{k-m} Conjugation $x^*[n]$ a_{k-m} Time Reversal $x[-n]$ a_{k-m} Time Scaling $x[n][n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \\ periodic Convolution\sum_{r=\langle N \rangle} x[r]y[n-r]Na_kb_kMultiplicationx[n]y[n]\sum_{l=\langle N \rangle} a_l bFirst Differencex[n] - x[n-1](1 - e^{-1})Running Sum\sum_{k=-\infty}^n x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}\begin{pmatrix} a_k = a \\ Re\{a_k\} \\ gm\{a_k \\ a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k$	riodic with riod N	
Time Scaling $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \\ (\text{periodic with period } mN) \end{cases}$ $\frac{1}{m}a_k \begin{pmatrix} v_m \\ v_m \end{pmatrix}$ Periodic Convolution $\sum_{r=\langle N \rangle} x[r]y[n-r]$ Na_kb_k Multiplication $x[n]y[n]$ $\sum_{l=\langle N \rangle} a_lb$ First Difference $x[n] - x[n-1]$ $(1-e^{-t})$ Running Sum $\sum_{k=-\infty}^n x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}$ $\begin{pmatrix} a_k = a_k \\ gm(a_k) \\ gm(a_k) \\ gm(a_k) \\ a_k = a_k \end{pmatrix}$ Conjugate Symmetry for Real Signals $x[n]$ real $x[n]$ real $\begin{cases} a_k = a_k \\ gm(a_k) \\ gm(a_k) \\ a_k = a_k \end{pmatrix}$ Conjugate Symmetry for Real Signals $x[n]$ real and even $x[n]$ real and odd a_k real a 		
Multiplication $x[n]y[n]$ Xa_kb_k Multiplication $x[n]y[n]$ $\sum_{l=\langle N \rangle} a_l b$ First Difference $x[n] - x[n-1]$ $(1 - e^{-t})$ Running Sum $\sum_{k=-\infty}^{n} x[k] (finite valued and periodic only)\left(\frac{1}{(1 - e^{-t})}\right)Conjugate Symmetry forReal Signalsx[n] real\begin{cases} a_k = a \\ \theta Re\{a_k\} \\ \theta m \{a_k = a \\ \theta Re \{a_k = a \\ \beta m \{a_k$	ewed as periodic $($ ith period mN	
Multiplication $x[n]y[n]$ $\sum_{l=\langle N \rangle} a_l b$ First Difference $x[n] - x[n-1]$ $(1 - e^{-t})$ Running Sum $\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}$ $\begin{pmatrix} \frac{1}{(1 - e^{-t})} \\ \frac{1}{(1 - e^{-t})} $		
First Difference $x[n] - x[n-1]$ $(1 - e^{-1})$ Running Sum $\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}$ $\begin{pmatrix} (1 - e^{-1}) \\ (1 - e^{-1}) \end{pmatrix}$ Conjugate Symmetry for Real Signals $x[n]$ real $\begin{cases} a_k = a \\ \Re e_k a_k \\ \Im m_k a_k \\ a_k = \\ \forall a_k = 1 \end{cases}$ Real and Even Signals $x[n]$ real and even $x[n]$ real and odd a_k real a a_k purelySven Odd Decomposition of Real Signals $\begin{cases} x_e[n] = \& v\{x[n]\} \\ x_e[n] = \& v[x[n]] \\ x_e[n] \\ x_e[n] = \& v[x[n]] \\ x_e[n] \\ $	k-1	
Conjugate Symmetry for $x[n]$ real Real Signals $x[n] \text{ real}$ $\begin{cases} a_k = a \\ \Im a_k = a \\ $	$k(2\pi/N)a_{l}$	
Contained Even Signals $x[n]$ real and even a_k real aReal and Odd Signals $x[n]$ real and odd a_k purelyEven-Odd Decomposition $x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n]$ real]Of Real Signals $x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n]$ real]	$\left(\frac{1}{jk(2\pi/N)}\right)a_k$	
Real and Odd Signals $x[n]$ real and even a_k real aReal and Odd Signals $x[n]$ real and odd a_k purelyEven-Odd Decomposition $x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n]$ real]of Real Signals $x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n]$ real]	$ \begin{aligned} \stackrel{*}{=} & \Re e\{a_{-k}\} \\ &= - \mathfrak{G}m\{a_{-k}\} \\ & a_{-k} \\ &- \measuredangle a_{-k} \end{aligned} $	
of Real Signals $\begin{cases} x_e[n] = \mathcal{E}v\{x[n]\} & [x[n] real] \end{cases} \qquad $	•	
Parseval's Relation for Periodic Signals		
$\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2 = \sum_{k=\langle N\rangle} a_k ^2$		

Chap. 3

f eqs. iodic h M = 1; = 4.

sequence in (3.106), the ns, we have

(3.107)

onclude from

if values ov o represent 221