Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1–3pm, Friday, December 13, 2016, EE 129.

- 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and signature in the space provided on this page, **NOW!**
- 2. This is a closed book exam.
- 3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
- 4. Use the back of each page for rough work.
- 5. Neither calculators nor help sheets are allowed.

Name:

Student ID:

I certify that I have neither given nor received unauthorized aid on this exam.

Signature:

Date:

Question 1: [20%, Work-out question]

1. [1%] What is the difference between "AM synchronous demodulation" and "AM asynchronous demodulation"?

Hint 1: The former requires a very specific component in its demodulator while the latter, also known as *envelope detector*, does not need that component. If you can write down the name of that component, you will receive the full credit.

Hint 2: The said component is usually generated by a block called "PLL."

Prof. Wang wanted to transmit an AM-SSB signal. To that end, he wrote the following MATLAB code.

```
% Initialialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read two different .wav files
[x1, f_sample, N]=audioread('x1.wav');
x1=x1';
[x2, f_sample, N]=audioread('x2.wav');
x2=x2';
% Step 0: Initialize several parameters
W_1=pi*2000;
W_2=pi*4000;
W_3=pi*8000;
W_4=pi*3000;
W_5=pi*7000;
W_6=???;
```

```
% Step 1: Make the signals band-limited.
h=1/(pi*t).*(sin(W_1*t));
x1_new=ece301conv(x1, h);
x2_new=ece301conv(x2, h);
```

```
% Step 2: Multiply x1_new and x2_new with a cosine wave.
x1_h=x1_new.*sin(W_2*t);
x2_h=x2_new.*sin(W_3*t);
% Step 3: Keep one of the two side bands
h_one=1/(pi*t).*(2*sin(W_4*t)).*(cos(W_5*t));
h_two=1/(pi*t).*(2*sin(W_4*t)).*(cos(W_6*t));
x1_sb=ece301conv(x1_h, h_one);
x2_sb=ece301conv(x2_h, h_two);
% Step 4: Create the transmitted signal
y=x1_sb+x2_sb;
audiowrite('y.wav', y, f_sample);
```

- 2. [1.5%] What is the bandwidth (Hz) of the signal x1_new?
- 3. [1.5%] For the first signal x1_new, is this AM-SSB transmitting an upper-side-band signal or a lower-side-band signal?
- 4. [1.5%] What should the value of W₆ be in the MATLAB code, if we decide to use a lower-side-band transmission for the second signal x2_new?
- 5. [1.5%] What should the value of W₋6 be in the MATLAB code, if we decide to use an upper-side-band transmission for the second signal x2_new?

Knowing that Prof. Wang used the above code to generate the "y.wav" file, a student tried to demodulate the output waveform "y.wav" by the following code.

```
% Initialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read the .wav files
[y, f_sample, N]=audioread('y.wav');
y=y';
% Initialize several parameters
W_8=???;
W_9=???;
W_10=???;
W_11=???;
W_12=???;
% Create the low-pass filter.
h_M=1/(pi*t).*(sin(W_8*t));
% demodulate signal 1
h_BPF1=1/(pi*t).*(sin(W_9*t))-1/(pi*t).*(sin(W_10*t));
y1_BPF=ece301conv(y,h_BPF1);
y1=4*y1_BPF.*sin(pi*4000*t);
x1_hat=ece301conv(y1,h_M);
sound(x1_hat,f_sample)
% demodulate signal 2
h_BPF2=1/(pi*t).*(sin(W_11*t))-1/(pi*t).*(sin(W_12*t));
y2_BPF=ece301conv(y,h_BPF2);
y2=4*y2_BPF.*sin(pi*W_3*t);
x2_hat=ece301conv(y2,h_M);
```

sound(x2_hat,f_sample)

6. [7.5%] Continue from the previous questions. What should the values of W_8 to W_12 be in the MATLAB code? When answering this question, please assume that the second radio x2_new is transmitted using the *upper side-band*.

- 7. [2.5%] Suppose that Prof. Wang decides to use the *upper-side-band* transmission for x2_new but at the same time wants to make the "frequency bands" of x1_new and x2_new as close to each other as possible. Question: What is the smallest value of W_3 that Prof. Wang can still use while not affecting the sound quality of either x1_new or x2_new?
- 8. [3%] Continue from the previous sub-question. In addition to changing the value of W_3, the values of W_6, W_11, and W_12 also need to be changed. Question: What are their new values?

Hint: If you do not know the answers of Q1.2 to Q1.8, please simply draw the AMSSB modulation and demodulation diagrams and mark carefully all the parameter values. You will receive 10 points for Q1.2 to Q1.8.

Question 2: [12%, Work-out question]

1. [4%] Consider the following discrete time signal

$$x_1[n] = \sin\left(\frac{4\pi}{3}n\right). \tag{1}$$

Let $X_1(e^{j\omega})$ denote the corresponding DTFT. Find the expression of $X_1(e^{j\omega})$ and plot $X_1(e^{j\omega})$ for the range of $-2\pi < \omega < 2\pi$.

2. [4%] Consider a discrete time signal $x_2[n]$ with the corresponding DTFT being

$$X_2(e^{j\omega}) = \sin\left(5\omega + \frac{\pi}{4}\right). \tag{2}$$

Find the expression of $x_2[n]$.

3. [4%] Consider the following discrete time signal

$$x_3[n] = \begin{cases} n & \text{if } -100 \le n \le 100\\ 0 & \text{otherwise} \end{cases}$$
(3)

Let $X_3(e^{j\omega})$ denote the corresponding DTFT. Find the value of $\int_{\omega=100\pi}^{102\pi} X_3(e^{j\omega})d\omega$.

Question 3: [17%, Work-out question]

Consider a continuous time signal $x(t) = \cos(15\pi t) + \sin(10\pi t)$ and we use a digital voice recorder to convert the continuous time signal x(t) to its discrete time counterpart x[n] with sampling frequency 10Hz. Answer the following questions.

- 1. [3%] Write the explicit expression of x[n] in this question. Namely, your answer should be something like $x[n] = \cos \dots$
- 2. [3%] Plot x[n] for the range of $-4 \le n \le 4$.
- 3. [3%] Continue from the previous question. We use "zero-order hold" to reconstruct the original signal. We denote the output by $\hat{x}_{\text{ZOH}}(t)$. Plot $\hat{x}_{\text{ZOH}}(t)$ for the range of -0.5 < t < 0.5.

[Alternative question:] If you do not know the answer to this question, you can assume that the sampling period is $T = \frac{1}{5}$ and the sampled values are $x[n] = \sin(0.5\pi n)$. Plot the Zero-Order-Hold output $\hat{x}_{\text{ZOH}}(t)$ for the range of t = -1 to 1. If your answer is correct, you will receive 2.5 points.

- 4. [4%] Let $x_p(t)$ denote the *impulse train-sampled signal* of x(t). Plot $x_p(t)$ for the range of -0.5 < t < 0.5.
- 5. [4%] Consider an LTI system with impulse response

$$h_2(t) = \frac{\sin(10\pi t))}{10\pi t}$$
(4)

Let $y_2(t)$ denote the convolution $y_2(t) = x_p(t) * h_2(t)$. Find the expression of $y_2(t)$ and plot $y_2(t)$ for the range of -0.5 < t < 0.5.

Hint 1: This is a relatively harder question. You should not spend too much time on this question if you do not know how to approach it.

Hint 2: You should first plot $y_2(t)$ and try to "guess" what is the expression of $y_2(t)$ and then write two to four sentences to justify your guess.

Hint 3: If you do not know the answer to this sub-question, you can plot $h_2(t)$ for the range of -0.5 < t < 0.5. and then plot $y_2(t)$ for the range of -0.5 < t < 0.5without finding the expression of $y_2(t)$. You will still receive 3 points if your answers are correct.

Question 4: [10%, Work-out question]

Consider a digital voice recorder that converts a continuous time waveform x(t) into a discrete time array x[n] with sampling frequency 44.1kHz. The x[n] is stored in a .wav file. Answer the following questions.

1. [4%] Suppose I pass x[n] through the following discrete-time signal processing equation:

$$y[n] = x[n] * h[n] \tag{5}$$

where

$$h[n] = \frac{\sin(0.5\pi n)}{\pi n}.$$
(6)

After processing x[n] to generate y[n] and storing it into a new .wav file, when I play the new wav file (containing y[n]), how will the new music file sound?

Hint 1: A couple of sentences describing the qualitative behavior will be enough. There is no need to have very exact expression.

Hint 2: If you do not know the answer, you can assume $h[n] = \frac{1}{5} (\sum_{k=-2}^{2} \delta[n-k])$ and answer the following alternative question instead: Is this signal processing block a low-pass filter or a high-pass filter? You will receive 3 points if your answer is correct.

- 2. [4%] Suppose my very old MP3 player can only play audio files that are sampled at 22.05kHz. Also suppose that I did not know the limitation of my MP3 player and incorrectly fed my recorded array x[n] to the old MP3 player. How will the music file sound in the old MP3 player when the "sampling frequency 44.1kHz" is now twice as large as the "playback frequency 22.05kHz"? A quick sentence or two that explain how the sound quality will change is sufficient.
- 3. [2%] What kind of processing do we need to apply to x[n] first (before playing back using the old MP3 player) so that the new $x_{\text{new}}[n]$ can be properly played by the old MP3 player?

Question 5: [9%, Work-out question]

Consider the following discrete-time signals

$$x[n] = 0.5^{n} \mathcal{U}[n - 100]$$
(7)

- 1. [1%] What does "ROC" stand for?
- 2. [3.5%] Denote the Z-transform of x[n] by X(z). Find out the value of $X(1 + \sqrt{3}j)$. Namely evaluate X(z) when $z = 1 + \sqrt{3}j$.
- 3. [4.5%] Find the Z-transform X(z) for general z values and carefully specify and draw its ROC in the corresponding z-plane.

Hint: To decide the ROC, you need to carefully check whether you can apply the following formula that solves a geometric series.

$$\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r} \quad \text{if } |r| < 1.$$
(8)

Question 6: [9%, Work-out question]

Consider a CT LTI system with impulse response

$$h(t) = \frac{\sin(3t)}{\pi t} \tag{9}$$

- 1. [6%] Find the output y(t) when the input is $x(t) = \cos(2t) + \sin(\pi t)$.
- 2. [1.5%] Is x(t) periodic? Use 1 sentence to justify your answer.
- 3. [1.5%] Is y(t) periodic? Use 1 sentence to justify your answer. Hint: If you do not know the answer of y(t), you can assume $y(t) = e^{\cos(\pi t) + \sin(3\pi t)^2}$. You will be given full credit if your answer is correct.

Question 7: [8%, Work-out question]

Consider the following continuous time system.

$$y(t) = \begin{cases} \int_{s=t-1}^{t} x(s) ds & \text{if } 0 < t\\ \int_{s=t-2}^{t} x(s) ds & \text{if } t \le 0 \end{cases}.$$
 (10)

Prove that the above system is not time-invariant. You need to write down the detailed steps in the proof.

Alternative question: If you do not know how to approach the above question, you can prove that the above system is linear. You will still receive 7 points if your proof of linearity is correct.

Question 8: [15%, Multiple-choice question] Consider two signals

$$h_1(t) = e^{-|t|\cos(t^3)} \tag{11}$$

and

$$h_2[n] = \sin(0.5 \cdot |n+1| \cdot \pi) + \sin(0.5 \cdot (n+1) \cdot \pi)$$
(12)

- 1. [1.25%] Is $h_1(t)$ periodic?
- 2. [1.25%] Is $h_2[n]$ periodic?
- 3. [1.25%] Is $h_1(t)$ even or odd or neither?
- 4. [1.25%] Is $h_2[n]$ even or odd or neither?
- 5. [1.25%] Is $h_1(t)$ of finite energy?
- 6. [1.25%] Is $h_2[n]$ of finite energy?

Suppose the above two signals are also the impulse responses of two LTI systems: System 1 and System 2, respectively.

- 1. [1.25%] Is System 1 memoryless?
- 2. [1.25%] Is System 2 memoryless?
- 3. [1.25%] Is System 1 causal?
- 4. [1.25%] Is System 2 causal?
- 5. [1.25%] Is System 1 stable?
- 6. [1.25%] Is System 2 stable?

Discrete-time Fourier series

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} \tag{1}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$
⁽²⁾

Continuous-time Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$
(3)

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt \tag{4}$$

Continuous-time Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
⁽⁵⁾

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
(6)

Discrete-time Fourier transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(j\omega) e^{j\omega n} d\omega$$
⁽⁷⁾

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(8)

Laplace transform

$$x(t) = \frac{1}{2\pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{j\omega t} d\omega$$
(9)

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
(10)

Z transform

$$x[n] = r^{n} \mathcal{F}^{-1}(X(re^{j\omega})) \tag{11}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
(12)

, and impulse unction of the the frequency (2). Also, from eigenfunction e response. e poles, zeros, llustrate some a mimportant

(96.01)

esentation of ,7.2.01 noi

ransforms of ransforms of ransform pairs. And 5 follow 0.18, These, 2tions 10.5,4 airs 9 and 10 airs 9 and 10 arg properties ag properties

-5 oft fo ss: .5.01 slqmsx

Of .qedD

10.5.9		10.5.8	10.5.7	10.5.6 10.5.7 10.5.7	10.5.5	10.5.4	10.5.3	10.5.1 10.5.2		Section	TABLE 10.
	in the z-domain	Differentiation	Accumulation	Conjugation Convolution First difference	Time expansion	Time reversal	Scaling in the z-domain	Linearity Time shifting		Property	
If x[n] = x[0]		nx[n]	$\sum_{k=-\infty}^{n} x[k]$	$x^{*}[n] x_{1}[n] * x_{2}[n] x[n] - x[n - 1]$	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$ for some in	x[-n]	$e^{j\omega_0 n} x[n]$ $z_0^n x[n]$ $a^n x[n]$	$ax_1[n] + bx_2[n] x[n - n_0]$	$\begin{array}{c} x[n] \\ x_1[n] \\ x_2[n] \end{array}$	Nignai	a :
value 1 neuron 0 for $n < 0$, then $= \lim_{z \to \infty} X(z)$		$-z \frac{dz}{dx(z)}$	$\frac{1}{1-z^{-1}}X(z)$	$\begin{array}{c} \mathbf{A} \ (z) \\ \mathbf{X}_{1}(z)\mathbf{X}_{2}(z) \\ (1-z^{-1})\mathbf{X}(z) \end{array}$	eger $r = X(z^k)$	$X(z^{-1})$	$X(e^{-jw_0}z) onumber \ X(a^{-1}z) onumber \ X(a^{-1}z)$	$aX_1(z) + bX_2(z)$ $z^{-n_0}X(z)$	$egin{array}{c} X_1(z) \ X_2(z) \end{array}$	$\mathbf{Y}(z)$	z-Transform
		R	At least the intersection of K and $ z > 1$	At least the intersection of R_1 and R_2 At least the intersection of R and $ z > 0$	$R^{1/k}$ (i.e., the set of points $z^{}$, where z is in R)	Inverted R (i.e., $K' = \text{ the set of } points z^{-1}$, where z is in R)	$z_0 R$ $Scaled version of R (i.e., a R = the set of points { a z} for z in R)$ $set of points { a z} for z in for here of of the set of for the set of for the set of for the set of for the set of the set of$	At least the intersection of A1 and A2 R, except for the possible addition or deletion of the origin	R_1 R_2	R	ROC

SLL

Signal	Transform	ROC			
1. $\delta[n]$	1	All z			
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1			
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1			
4. $\delta[n-m]$	z^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)			
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $			
6. $-\alpha^{n}u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	z < lpha			
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $			
8. $-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $			
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1			
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin\omega_0]z^{-1}}{1-[2\cos\omega_0]z^{-1}+z^{-2}}$	z > 1			
11. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r			
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r			

TABLE 10.2SOME COMMON z-TRANSFORM PAIRS

10.7.1 Causality

A causal LTI system has an impulse response h[n] that is zero for n < 0, and therefore is right-sided. From Property 4 in Section 10.2 we then know that the ROC of H(z) is the exterior of a circle in the z-plane. For some systems, e.g., if $h[n] = \delta[n]$, so that H(z) = 1, the ROC can extend all the way in to and possibly include the origin. Also, in general, for a right-sided impulse response, the ROC may or may not include infinity. For example, if $h[n] = \delta[n + 1]$, then H(z) = z, which has a pole at infinity. However, as we saw in Property 8 in Section 10.2, for a causal system the power series

$$H(z) = \sum_{n=0}^{\infty} h[n] z^{-n}$$

does not include any positive powers of z. Consequently, the ROC includes infinity. Summarizing, we have the follow principle:

A discrete-time LTI system is causal if and only if the ROC of its system function is the exterior of a circle, including infinity.

IABLE 5.1 THOLEHILLO		Fourier Series Coefficients			
Property	Section	Periodic Signal			
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k		
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$		
Time Shifting	3.5.2	$x(t-t_0)$ $e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$	a_{k-M}		
Conjugation	3.5.6	$x^*(t)$	a_{-k}		
Time Reversal	3.5.3 3.5.4	x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k		
Periodic Convolution		$\int_{T} x(\tau) y(t-\tau) d\tau$	Ta_kb_k		
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty}a_lb_{k-l}$		
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$		
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$ $\left(a_k = a^*\right)$		
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\begin{cases} a_k & \exists_{-k} \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \not \propto a_k = - \not \ll a_{-k} \end{cases}$		
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6 3.5.6	$\begin{aligned} x(t) \text{ real and even} \\ x(t) \text{ real and odd} \\ \begin{cases} x_e(t) = \mathcal{E}\upsilon\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases} \end{aligned}$	a_k real and even a_k purely imaginary and odd $\operatorname{Re}\{a_k\}$ $j\operatorname{Im}\{a_k\}$		
		Parseval's Relation for Periodic Signals			
		$\frac{1}{T}\int_{T} x(t) ^{2}dt = \sum_{k=-\infty}^{+\infty} a_{k} ^{2}$			

PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

three examples, we illustrate this. The last example in this section then demonstrates how properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g(t) with a fundamental period of 4, shown in Figure 3.10 is could determine the Figure 3.10 is could determine the Fourier series representation of g(t) directly from the analysis control (2.30). Instead, when a function of g(t) directly from the analysis control (2.30). tion (3.39). Instead, we will use the relationship of g(t) to the symmetric periodic space wave r(t) in Example 3.5. Before to the wave x(t) in Example 3.5. Referring to that example, we see that, with T = 4 at $T_{1} = 1$ $T_1 = 1,$ (**1***

g(t) = x(t-1) - 1/2.

Sec. 3.7 Properties of Discrete-Time Fourier Series

Thus, in general, *none* of the finite partial sums in eq. (3.52) yield the exact values of x(t), and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2	PROPERTIES	0F	DISCRETE-TIME	FOURIER	SERIES
-----------	------------	----	---------------	---------	--------

Property	Periodic Signal	Fourier Series Coefficients		
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\left. \begin{array}{c} a_k \\ b_k \end{array} \right\}$ Periodic with b_k period N		
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^{*}[n]$ $x[-n]$ $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ $(\text{periodic with period } mN)$	$Aa_{k} + Bb_{k}$ $a_{k}e^{-jk(2\pi/N)n_{0}}$ a_{k-M} a_{-k}^{*} a_{-k} $\frac{1}{m}a_{k} \left(\begin{array}{c} \text{viewed as periodic} \\ \text{with period } mN \end{array} \right)$		
Periodic Convolution Multiplication	$\sum_{\substack{r=\langle N\rangle\\x[n]y[n]}} x[r]y[n-r]$	Na_kb_k $\sum a_lb_{k-l}$		
First Difference	x[n] - x[n-1]	$\frac{1}{(1-e^{-jk(2\pi/N)})a_k}$		
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\begin{array}{c} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{array} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$		
Conjugate Symmetry for Real Signals	x[n] real	$\left\{egin{array}{l} a_k &= a_{-k}^* \ { m Re}\{a_k\} &= { m Re}\{a_{-k}\} \ { m Sm}\{a_k\} &= -{ m Sm}\{a_{-k}\} \ a_k &= a_{-k} \ { m \sphericalangle} a_k &= -{ m \sphericalangle} a_{-k} \end{array} ight.$		
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd		
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \delta v\{x[n]\} & [x[n] real] \\ x_o[n] = \mathbb{O}d\{x[n]\} & [x[n] real] \end{cases}$	$\mathbb{R}e\{a_k\}$ $j\mathcal{G}m\{a_k\}$		
and the second se	Parseval's Relation for Periodic Signals			
	$\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2 = \sum_{k=\langle N\rangle} a_k ^2$,		
		······································		

Chap. 3

f eqs. iodic h M = 1; = 4.

sequence in (3.106), the ns, we have

(3.107)

onclude from

if values ov o represent 221

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

ection	Property	Aperiodic signa	al	rourier transform
		x(t) y(t)		Χ(jω) Υ(jω)
4.3.1 4.3.2 4.3.6 4.3.3 4.3.5 4.3.5 4.4 4.5	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time and Frequency Scaling Convolution Multiplication	$ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t} x(t)$ $x^*(t)$ $x(-t)$ $x(at)$ $x(t) * y(t)$ $x(t)y(t)$ $\frac{d}{t} x(t)$		$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$ $X^*(-j\omega)$ $X(-j\omega)$ $\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$ $X(j\omega)Y(j\omega)$ $\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\theta)Y(j(\omega - \theta))d\theta$ $j\omega X(j\omega)$
4.3.4 4.3.4 4.3.6	Integration Differentiation in Frequency	$dt^{(x)}$ $\int_{-\infty}^{t} x(t)dt$ $tx(t)$		$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $j\frac{d}{d\omega}X(j\omega)$ $(X(j\omega) = X^*(-j\omega)$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real		$\begin{cases} \Re_{\mathcal{C}}\{X(j\omega)\} = \Re_{\mathcal{C}}\{X(-j\omega)\} \\ \Re_{\mathcal{C}}\{X(j\omega)\} = -\Im_{\mathcal{C}}\{X(-j\omega)\} \\ \Re_{\mathcal{C}}\{X(j\omega)\} = X(-j\omega) \\ \Re_{\mathcal{C}}(j\omega) = -\Im_{\mathcal{C}}(x(-j\omega)) \\ \Re_{\mathcal{C}}(j\omega) \text{ real and even} \end{cases}$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even		$X(j\omega)$ purely imaginary and ω
4.3.3	Symmetry for Real and Odd Signals	$x_{e}(t) = \xi v \{ x(t) \}$	[x(t) real]	$\Re e\{X(j\omega)\}$
4.3.3	Even-Odd Decompo- sition for Real Sig nals	$x_o(t) = \mathbb{O}d\{x(t)\}$	[x(t) real]	j\$m{X(jω)}
4.3.7	Parseval's Rel $\int_{-\infty}^{+\infty} x(t) ^2 dt$	ation for Aperiodic Signation for $A_{periodic}$ Signation $t = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 dz$	gnals 1ω	

Sec. 4.6 Tables of Fourier Properties and of Basic Fourier Transform Pairs

FORM PAIRS

Chap. 4

调查

169(I

0850

 $X_{\rm EV}$

12050 165 52

ADAS -

; we have considre summarized in which each prop-

ansform

important Fourier pply the tools of

transform

iω)

 $(r - \theta) d\theta$

 $(0)\delta(\omega)$

-*jω*) · $\Re e\{X(-j\omega)\}$ $-\mathcal{I}m\{X(-j\omega)\}$ - jω)| $(X(-j\omega))$ ven

iginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_0t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a _k
e ^{jwut}	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, \ k \neq 0$ (this is the Fourier series representation for) (any choice of $T > 0$)
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and x(t+T) = x(t)	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega-k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k \omega_0 T_1}{\pi} \right) = \frac{\sin k \omega_0 T_1}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t), \Re e\{a\}>0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	· · · · · · · · · · · · · · · · · · ·

329

er Transform Chap.s

nd $X_2(e^{j\omega})$. The periodic convolu-

Sec. 5.7 Duality

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal		Fourier Transform
	<u></u>	x[n]		$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π
5.3.2	Linearity Time Shifting	$ax[n] + by[n]$ $x[n - n_0]$		$aX(e^{j\omega}) + bY(e^{j\omega})$ $e^{-j\omega n_0}X(e^{j\omega})$
5.3.3	Frequency Shifting	$e^{j\omega_0 n} x[n]$		$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	<i>x</i> *[<i>n</i>]		$X^*(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	if $n = multiple of k$	$X(e^{-j\omega})$
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x_{[n]} \\ 0, \end{cases}$	if $n \neq$ multiple of k	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]		$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]		$\frac{1}{2\pi}\int_{2\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]		$+\pi X(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real		$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im m\{X(e^{j\omega})\} = -\Im m\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \ll X(e^{j\omega}) = - \ll X(e^{-j\omega}) \end{cases}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even		$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd		$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}\nu\{x[n]\}$	[x[n] real]	$\Re e\{X(e^{j\omega})\}$
	of Real Signals	$x_o[n] = \mathbb{O}d\{x[n]\}$	[x[n] real]	j Im{ $X(e^{j\omega})$ }
5.3.9	Parseval's Re	lation for Aperiodic S	Signals	
	$\sum_{n=-\infty}^{+\infty} x[n] $	$x^{2} = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^{2}$	dω	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_k of a periodic signal x[n] are themselves a periodic sequence, we can expand the sequence a_k in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_k are the values of (1/N)x[-n] (i.e., are proportional to the values of the original

nple 5.15.

ω

crete-time Fourier 1. In Table 5.2, we r transform pairs.

nmetry or duality to corresponding tion (5.8) for the rete-time Fourier addition, there is

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N \rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	<i>a_k</i>
e ^{jw} 0 ⁿ	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, k = m, m \pm N, m \pm 2N, \dots \\ 0, \text{ otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
cos ω ₀ n	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j}\sum_{l=-\infty}^{+\infty} \{\delta(\omega-\omega_0-2\pi l)-\delta(\omega+\omega_0-2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi\sum_{l=-\infty}^{+\infty}\delta(\omega-2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \\ and \\ x[n+N] = x[n] \end{cases}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{\sin w_n}{\pi n} = \frac{w}{\pi} \operatorname{sinc} \left(\frac{w_n}{\pi} \right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W\\ 0, & W < \omega \le \pi\\ X(\omega) \text{ periodic with period } 2\pi \end{cases}$	-
$\delta[n]$	1	
<i>u</i> [<i>n</i>]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$(n+1)a^n u[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$	-
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

397