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choice questions, there is no need to justify your answers. You have one hour to
complete it. The students are suggested not spending too much time on a single
question, and working on those that you know how to solve.
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Question 1: [17%, Work-out question]

1. [1%] What does the acronym “AM-DSB” stand for?

Prof. Wang wanted to transmit an AM-SSB signal. To that end, he wrote the following
MATLAB code.

% Initialialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read two different .wav files
[x1, f_sample, N]=wavread(’x1’);
x1=x1’;
[x2, f_sample, N]=wavread(’x2’);
x2=x2";

% Step 0: Initialize several parameters
W_1=pi*4000;

W_2=pix*7000;

W_3=pi*x11000;

W_4=pi*11000;

W_5=pix*7000;

W_6=7777;

W_7="7777;

% Step 1: Make the signals band-limited.
h=1/(pi*t) . *(sin(W_1%t));
x1_new=ece301conv(xl, h);
x2_new=ece301conv(x2, h);

% Step 2: Multiply x1_new and x2_new with a sinusoidal wave.
x1_h=x1_new.*cos(W_2%t+pi/3);
x2_h=x2_new.*cos(W_3*t+pi/8);

% Step 3: Keep one of the two side bands
h_one=1/(pix*t) .*(sin(W_4*t))-1/(pix*t) .*(sin(W_5%*t));
h_two=1/(pix*t) .*(sin(W_6%*t))-1/(pi*t) .*x(sin(W_7%*t));



x1_sb=ece301conv(xl_h, h_one);
x2_sb=ece301conv(x2_h, h_two);

% Step 4: Create the transmitted signal
y=x1_sb+x2_sb;
wavwrite(y’, f_sample, N, ’y.wav’);

2. [1.5%] What is the bandwidth (Hz) of the signal x1 new?

3. [2.5%] Is this AM-SSB transmitting an upper-side-band signal or a lower-side-band
signal?

4. [3%] What should the values of W_6 and W_7 be in the MATLAB code?



Knowing that Prof. Wang used the above code to generate the “y.wav” file, a student
tried to demodulate the output waveform “y.wav” by the following code.

% Initialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read the .wav files
[y, f_sample, Nl=wavread(’y’);
y=y’;

% Initialize several parameters
W_8=7777,;
W_9=7777;
W_10=7777;
W_11=7777;

% Create the low-pass filter.
h_M=1/(pi*t).*(sin(pi*4000%*t));

% Create the band-pass filters.
h_BPF1=1/(pi*t) .*(sin(pi*11000*t)-sin(pi*7000*t));
h_BPF2=1/(pi*t) .*(sin(W_8*t)-sin(W_9%t));

% demodulate signal 1
y1_BPF=ece301conv(y,h_BPF1);
y1=4xy1_BPF.*cos(W_10%t) ;
x1_hat=ece301conv(yl,h_M);

sound (x1_hat,f_sample)

% demodulate signal 2
y2_BPF=ece301conv(y,h_BPF2);
y2=4*y2_BPF.*cos(W_11%t) ;
x2_hat=ece301conv(y2,h_M);

sound (x2_hat ,f_sample)

5. [4%)] Continue from the previous question. What should the values of W_8 to W_11
in the MATLAB code?

6. [5%] It turns out that using the above MATLAB code, the demodulated signals



x1_hat and x2_hat do not sound the same as the original signals x1_new and x2_new.
Please answer the following questions:

(i) Describe what is the “difference” when playing x1_hat versus x1_new.
(ii) Which one (radio station 1 versus radio station 2) has a more severe problem?

(iii) If you can only change the demodulation MATLAB codes, describe how we can
fix the code so that we can hear both x1_hat and x2_hat properly.

Hint: If you do not know the answers of Q1.2 to Q1.6, please simply draw the
modulation and demodulation diagrams of AMSSB. You need to carefully mark all
the parameter values in your diagram. You will receive 10 points for Q1.2 to Q1.6.









Question 2: [14%, Work-out question, Learning Objective 6]
Consider a discrete-time signal

1 ifn=20
$[7’L] = {;H(Zn) (1)

otherwise

1. [2%)] Plot z[n] for the range of —5 < n <5.

2. [2%)] Plot X (e¥), the DTFT of z[n], for the range of —27 < w < 27. Hint: Table
5.2 may be useful.

Consider another signal

1 if nis even
— 2
pin) {0 if n is odd )

3. [1%] Plot p[n] for the range of =5 < n < 5.

4. [2%)] Plot P(e’*), the DTFT of p[n], for the range of —27 < w < 27. Hint: Table
5.2 may be useful.

Let y[n] = x[n] - p[n].
5. [2%)] Plot y[n| for the range of —5 < n <5.

6. [5%)] Plot Y (e’¥), the DTFT of y[n], for the range of —27 < w < 27. Hint: If you
do not know how to solve Q2.6, you can solve the following question instead and
you will get 3.5 points if your answer is correct.

Suppose
w5 if -2 <w<0
Z(jw) =S —w+T f0<w<T (3)
0 otherwise

Define W (jw) = Z(jw) * > ;- 6(w — hr). Plot W(jw) for the range of —2m <
w < 2m.












Question 3: [14%, Work-out question, Learning Objective 6] Suppose a continuous-time
signal z(t) is sampled with sampling frequency 2Hz, and the sampled array values are

2 ifn=0
zn)=<1 ifn=4 . (4)

0 otherwise

1. [3%)] Let x,on(t) denote the reconstructed signal using Zero-Order Hold. Plot x,op(t)
for the range of —4 <t < 4.

2. [4%)] Let zopt(t) denote the reconstructed signal using the optimal band-limited in-
terpolation. Plot x.p(t) for the range of —4 <t < 4.

Prof. Wang downloaded a high-quality audio file, which is sampled at 176.4kHz and stored
in the mono .wav format. Namely, when read by MATLAB, the audio file of Prof. Wang
can be represented by an array win].

After downloading the file, Prof. Wang realized that his music player can only play
at the sampling rate 44.1kHz. Because of this match (176.4kHz versus 44.1kHz), Prof.
Wang cannot listen to the audio file properly.

3. [4%)] If we use the 44.1kHz music player to play this high-quality audio file (176.4kHz),
how will it sound?

4. [3%] How would you use MATLAB to “convert” the file w[n] so that the new file
can be played by Prof. Wang’s music player?

Hint: You can either just describe carefully, in plain English, what is your main
idea; or you can choose to use a pseudo code to answer this question; or you can
actually write down the MATLAB code directly. Your answer will be graded based
on whether the concepts are correct. It will not be graded based on which way you
choose to explain your answers.












Question 4: [15%, Work-out question, Learning Objective 6] For any continuous time
signal x(t), let x,(t) denote the corresponding impulse-train-sampled signal with sampling
frequency 2Hz.

1.

[3%] Suppose z(t) = sin(3wt). Plot the corresponding CTFT X (jw) for the range
of —4r <w < A4r.

[4%] Continue from the above question. Plot the CTFT X,(jw) of the impulse-
train-sampled signal z,(¢) for the range of —47 < w < 4.

[4%] Continue from the above questions. Assuming the optimal band-limited re-
construction is used to generate the reconstructed signal Z(t) from z,(t). Plot the

CTFT X (jw) of the reconstructed signal #(t) for the range of —4r < w < 47.

[4%] Continue from the above questions. Find the expression of the reconstructed
signal Z(t). There is no need to plot z(t).

Hint: If you do not know the answers of Q4.3 and Q4.4, you can simply draw the
diagram how to reconstruct the original signal Z(¢) from the impulse-train-sampled
signal x,(t). You will get 4 points if your answer is correct.












Question 5: [8%, Work-out question]
Define z(t) = e 'U(t) and

h(t) = ()

eIt if £ <0
0 otherwise

Define y(t) = x(t) * h(t). Find the expression of y(¢). Hint: You may want to try direct
computation.












Question 6: [7%, Work-out question]
Consider a discrete-time periodic signal z[n]

27 if0<n<19
xz[n] = o . 3 : (6)
periodic with period N = 20

Find the discrete-time Fourier-series (DTFS) representation of z[n]. Hint: You may need
to use the formula:

if r # 1. (7)

1 —
Zark—lza( r
1—7r

K K)
k=1












Question 7: [10%, Work-out question]
Consider a continuous-time signal z(t) = cos(nt). We perform Amplitude Modulation on

x(t) with the carrier frequency 1000Hz. Let y(t) denote the modulated signal.

1. [7%)] Write down the expression of y(t) in terms of z(t), and plot y(t) for the range
of =2 < ¢t <2.

2. [3%] Suppose we use asynchronous demodulation and generate Tosyn(t) from the
received signal y(t). Plot Zasyn(t) for the range of —2 <¢ < 2.

Hint: If you do not know the answer of Q7.2, please write down a couple of sentences
on how to perform asynchronous demodulation. You will get 2 points if your answers

are correct.












Question 8: [15%, Multiple-choice question] Consider two signals
hy(t) = e(sin(20)’* cos(t) (8)
and

sin(997n) if n <99
ha[n] = ¢ e™ if 100 <n <200 9)
e100—n if 201 <n

1. [1.25%] Is hy(t) periodic?

2. [1.25%)] Is ha[n] periodic?

3. [1.25%] Is hy(t) even or odd or neither?
4. [1.25%)] Is hs[n] even or odd or neither?
5. [1.25%] Is hy(t) of finite energy?

6. [1.25%] Is he[n] of finite energy?

Suppose the above two signals are also the impulse responses of two LTI systems:
System 1 and System 2, respectively.

1. [1.25%] Is System 1 memoryless?
2. [1.25%)] Is System 2 memoryless?
3. [1.25%] Is System 1 causal?
4. [1.25%)] Is System 2 causal?
5. [1.25%] Is System 1 stable?

6. [1.25%] Is System 2 stable?






Discrete-time Fourier series

x[n] _ Z akejk(Qﬂ/N)n
k—(N)

1 .
ap = — Z x[n]efjk(Zﬂ/N)n

N
n=(N)
Continuous-time Fourier series
oo
ZE(t) _ Z akejk(QTr/T)t
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1 )
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Continuous-time Fourier transform
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oo
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x[n] = o, X (jw)e* dw
X(e*) = Z x[n]ewn

Laplace transform
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TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES
S ———
Property Section Periodic Signal Fourier Series Coefficients
x(f)) Periodic with period T and ay
¥(t) fundamental frequency wo = 2T by
Linearity 351 Ax(®) + By(®) Aa; + Bb;
Time Shifting 352 x(t — to) ape ol = age ey
Frequency Shifting eiMant x(1) = /M (27/T) x(2) Q-
Conjugation 356 x*(t) ay
Time Reversal 3.5.3 x(—1t) a-
Time Scaling 3.54 x(at), >0 (periodic with period T/a) ax
Periodic Convolution J x(T)y(t — Td7 Taxby
T
4o
Multiplication 3.5.5 x(0)y® Z aiby-
J= -
. e dx(t . 2
Differentiation d(t) koot = JkTW a
t it 1\ d .
Integration J x(H) dt(ﬁr{1 © .va ved fm _l_ ar = _l___
o periodic only if a0 = 0) Jkawo jkQ2mIT)
ap = aik
Refar} = Relai}
Conjugate Symmetry for 356 x(¢) real Imiar} = —dmia_y)
Real Signals laxl = lai ~
Yay = —Xa-
Real and Even Signals 35.6 x(t) real and even ay real and even ;
Real and Odd Signals 35.6 x(7) real and odd ay, purely imaginary
Even-Odd Decomposition {xe(t) = &v{x(n)} [x(r) real] Refayt
of Real Signals x,(1) = Od{x(0} [x(p) real] jImiat
Pparseval’s Relation for Periodic Signals
1 I
3| opar = >l
three examples, we illustrate this. The last example in this section then demons
d to characterize the signal in great detail.

propetties of a signal can be use

Example 3.6

Consider the signal g(z) with a fundamental period of

. could determine the Fourier s
tion (3.39). Instead,
wave x(f) in Example
T[ = 1,

3.5. Referring to that example,

g®) = x(t -1~ 1/2.

eries representation of g(2) direct! :
we will use the relationship of g(r) to the symumetric P&

4, shown in Figure
1y from the ana

we see that, with
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Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(¢),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property

Periodic Signal

Fourier Series Coefficients

Time Shifting
‘Frequency Shifting
Conjugation

Time Reversal

Time Scaling

eriodic Convolution

x[n] } Periodic with period N and
y[n] | fundamental frequency wo = 27/N

Ax[n] + By[n]

x[n = ny]
ejM(Z-n'/N)nx[n]

x"[n]
x[~n]
x[n/m], if n is a multiple of m
x(m) [n] = . . .
0, if n is not a multiple of m
(periodic with period mN)

> xlrlyln—r]

r=(N)

x[n]yln]

x[n] = x[n - 1]

Z x[K] (ﬁmte valued and periodic only)
e ifay =0

x[n] real

x[n] real and even
x[n] real and odd

{ xe[n] = &v{x[n])} [x[n] real]
x,[n] = Od{x[n]} [x[n]real]

Parseval’s Relation for Periodic Signals

¥ S P = S faf

n=(N) k=(N)

ay ] Periodic with
period N

a e~ ik@miNm
af- M
A
a—i

1  (viewed as periodic
m (with period mN )

Nakb,;

Z aibe;

1=(N)
(1 —- e—jk(ZvrIN))ak

1
((1 — e~ JkETIN)y )a"
ay = aik
Refa,} = Refa_y}
Imlay} = —Imla_}
la] = la-|
Lay = —Ya_;
ay, real and even
a, purely imaginary and odd
Gefa,}
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4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consi
ered some of the important properties of the Fourier transform. These are summarized
Table 4.1, in which we have also indicated the section of this chapter in which each pro
erty has been discussed. ~~

In Table 4.2, we have assembled a list of many of the basic and important Four
transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section Property Aperiodic signal Fourier transform k
x() X(jw)
¥ Y(jw)
43.1 Linearity ax(®) + by(® aX(jw) + b¥( jo)
432 Time Shifting x(t — 1) e i X(jw)
43.6 Frequency Shifting el x(t) X(jl@ — wo))
433 Conjugation x'(®) X (—jw)
43.5 Time Reversal x(—1) X(—jw)
435 Time and Frequency x(at) —1— (B—)
. la"\ a
Scaling
4.4 Convolution x(8) * y(t) X( jwﬂjq))’
45 Multiplication Xy 2—‘1—,[“&0 B)Y(j(w — O)d6
434 Differentiation in Time g;x(t) joX(jo)
t
434 Integration J x(r)dt J—,l(;X( jw) + 7X(0)86(w)
43.6 Differentiation in tx(t) j d—d—X (jow)
Frequency @
X(jw) = X"(~jo)
Re{X(jw)} = RelX(
433 Conjugate Symmetry x(t) real ImiX(jw)} = ~ 9
for Real Signals lX(jw)l _ lX(—jw)l ‘
LX(jw) = — X
433 Symmetry for Realand  x(f) real and even X(jw) real and even
Even Signals .
433 Symmetry for Realand  x(?) real and odd X(jw) purely imagipary
Odd Signals

%) = Svix(®}  [x() reall Re{X(jw)}

433 Even-Odd Decompo- (f) = Od{x(®) () real] )

gition for Real Sig-

437 Parseval’s Relation for Aperiodic Signals
+oo 1 +eo
200 o Y
[ixopar = 5| KGRl
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y We thVe COHSiCL

Fourier series coefficients

T€ summarizeg in Signal Fourier transform (if periodic)
Whlch eaCh T b o
prop. Z ageltn 27 Z ad(w — kwg) a,
. F= o P
tmportant Fourje,
1pPly the tools of gJwut 2m8(w — wy) a; = 1
a; = 0, otherwise
P 8(w ~ wo) + B(w + 1= =y
“transform coswot (o(@ ~ o) (@ +wo)l a, = 0, otherwise
h\
!
i m a = —a., = 5
t —[6(w — wg) — §(w + 2
Sinwy j[ (w — wp) (@ + wp)] a = 0, otherwise
;.)_ ........ a=1 a=0 k=0
@ x(n =1 27 6(w) this is the Fourier series representation for
any choice of T > 0
Periodic square wave ]
p=|b M=<D &= 2 sin kwoT T kooTi\ _ sin kwoT ‘
W0 <=1 S 2T g g,y @l sinc( 20 '): it LL
“— k T T km
and k=-e
x(t+T) = x(2)
)y —@)de
it 2m <5 27k 1
"Zwa(: - nT) 7,;“,8(‘0 - —T—) & = = forall k
(0)d(w) 1, <, 2sinwT),
x(®) e —
0, l>T, )

. sin Wt . L |of<w :
@) e X(jo) = [O :w: >W - :
Re{X (- jow)} » \
—Im{X(— jw)} 80 1 _

- jo)| '
X(—jw) u(®) - b jiw + 7 8(w) —
ven
\ginary and odd 8(t ~ o) e -
1
—at p—
e “u(t), Re{a} > 0 it e
te % u(t), Refa} > 0 —1— — t
’ (a+ jw) "
o _“<,l:1l)y e~ u(t), _1__ .
Refa} > 0 (a+ jo)
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TABLE 5.1 PROPERTIES OF THE DiSCRETE-TIME FOURIER TRANSFORM
Section  Property Aperiodic Signal Fourier Transform
x[n] X(ef‘")} periodic with
yin] Y(e/)]| period 27
5.3.2 Linearity ax{n] + by[n] aX(e’?) + bY (/)
53.3 Time Shifting xn — no) el x (o)
53.3 Frequency Shifting e/*" x(n] X(e/w-w0)y
534 Conjugation x'[n] X'(e™ ™)
5.3.6 Time Reversal x[—n] X(e )
. . _ [ x[n/k}, if n = multiple of & ™
53.7 Time Expansion Xwlnl = {0’ if n » multiple of k X(e*)
54 Convolution x[n] * y[n] X(e/)y(e™)
5.5 Multiplication x{nlyln] % J X(e®)Y(e")do
2
5.3.5 Differencing in Time x[n] = x[n—1] (1 — e )X (')
. - 1 o
53.5 Accumulation kzw x[k] =% X(e*)
400
+aX(e™) > 8(w — 2mk) ‘
538 Differentiation in Frequency  nx{n] 'd};(:)jw) !
X(e) = X (&™) |
Re{X(e/)} = Re{X(e )}
534 Conjugate Symmetry for x[n] real Im{X(e/*)} = —Im{X(e =)}
Real Slgnals IX(ef‘”)] = IX(e-jw)l
LX(e/*) = —4X (e )
534 Symmetry for Real, Even x[n] real an even X(e’*) real and even
Signals T
534 Symmetry for Real, Odd x[n] real and odd X(e/*) purely imaginary and f
Signals odd
534 Even-odd Decomposition x.[n] = &v{x[n]} [x[n] real] Re{X(e™)} 5
of Real Signals x,[n] = Od{x[n]} [x[n] real] jIm{X(e*)}
539 Parseval’s Relation for Aperiodic Signals

n=—o

400 1 )
S bl = o [P

a duality relationship between the discrete-time Fourier transform and the continuous-time

Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence a; in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-
quence a;, are the values of (1/N)x[—n] (i.e., are proportional to the values of the original




TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal

Fourier Transform

Fourier Series Coefficients (if periodic)

Z akejk(ZHIN)n
k=(N)

+
2ar Z akS(w - 2_;Vr_k)

k= —co

ag

eJoott

ro
> 8w —wg — 27l)

=—w

(a) =N
, k=mmxNmx2N,
0, otherwise
irrational = The signal is aperiodic

coswohn

™ Zm: {8(w — wp — 2ml) + 8(w + wy — 20}

[

- 2w
1
5
0, otherwise

irrational > The signal is aperiodic

k=xmzm=zN tm+2N.

sinwon

4o
% S (8w — wo — 27D — 8(w + wp = 27D}
I —co

2arr

N
s k=rrENrEoN.
—9p k= -norEN-rrap,
0, otherwise
irrational > The signal is aperiodic

x{n] = 1

oo
21 > 8w —2ml)

I=—o

1, k=0 %N £2N,...

0, otherwise

Periodic square wave
1, ]nl =N 1

x[n] =
0, N, <|n =NI2

and
x{n+ N] = x[n]

oo
21 Z apd (w - ?)

= —c

sin{Qak/NYN| + )]
N sin[27k/2N}

2N+ 1
N

, k#0,£N, 22N, .

, k=0,ZN, £2N,...

atuln], o <1

1~ aeJ®

L, la =N

x[n]=
(] 0, |n|> Ny

sinfw(N) + 5)]
sin{w/2)

smH’/n — W sinc (Wn)

ah T T

O<W<m

, 0=<loj=W

0, W<l ==
X(w) periodic with period 27

X(w) =

6[n}

1

uln]

4o
1—:%7“—) + Z 78w — 2mk)
k=—o

8[n — ngl

g“l‘“’"O

(n+ Da'uln], la <1

-
(I — ae~jo)?

(n+r—1!

20— D! laf <1

atuln),

i
(1 — ae—Jo)y
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