Midterm #3 of ECE301, Section 2

8–9pm, Monday, November 9, 2015, ARMS 1010.

- 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and signature in the space provided on this page, **NOW!**
- 2. This is a closed book exam.
- 3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
- 4. Use the back of each page for rough work.
- 5. Neither calculators nor help sheets are allowed.

Name:

Student ID:

I certify that I have neither given nor received unauthorized aid on this exam.

Signature:

Date:

Question 1: [18%, Work-out question, Learning Objectives 1, 2, 3] Consider a discrete-time signal

$$x[n] = \begin{cases} 0.5e^{jn} & \text{if } 1 \le n \le 10\\ 0.5 & \text{if } 11 \le n \le 20 \\ \text{is periodic with period } 20 \end{cases}$$
(1)

Denote the Fourier series coefficient of x[n] by (a_k, ω_0) .

- 1. [6%] Find the value of a_0 .
- 2. [6%] Find the value of $\sum_{k=0}^{19} a_k$.
- 3. [6%] Find the value of $\sum_{k=0}^{19} |a_k|^2$.

Hint: You may need to use the following formulas: If $|r| \neq 1$, then we have

$$\sum_{k=1}^{K} ar^{k-1} = \frac{a(1-r^K)}{1-r}.$$
(2)

If |r| < 1, then we have

$$\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}.$$
(3)

If $|r| \ge 1$, then we have

$$\sum_{k=1}^{\infty} a r^{k-1} \text{ does not exist.}$$
(4)

Question 2: [23%, Work-out question, Learning Objectives 2, 3, and 4] Consider a CT-LTI system, for which the impulse response is

$$h(t) = \frac{\sin(5t) - \sin(3t)}{\pi t} \tag{5}$$

Consider a CT signal:

$$x(t) = \sum_{k=0}^{\infty} \sin(k\pi/2t).$$
(6)

- 1. [10%] Find the Fourier series $(a_k, \frac{2\pi}{N})$ of x(t). Specifically, (i) find the expression of a_k for any arbitrary k, (ii) find the period N, and (iii) plot a_k for the range of $-2 \le k \le 2$.
- 2. [13%] Let y(t) denote the output when the input is x(t). Find the Fourier series $(b_k, \frac{2\pi}{N})$ of x(t). Specifically, (i) find the expression of b_k , (ii) find the period N, and (iii) plot b_k for the range of $-3 \le k \le 3$.

Hint 1: If you do not know the answer to this sub-question, you can find the Fourier transform $H(j\omega)$ of h(t). You will receive 10 points if your answer is correct.

Hint 2: The following values may be of use.

$$\frac{\pi}{2} \approx 1.571\tag{7}$$

$$\pi \approx 3.142\tag{8}$$

$$\frac{3\pi}{2} \approx 4.712\tag{9}$$

$$2\pi \approx 6.283\tag{10}$$

$$\frac{5\pi}{2} \approx 7.854\tag{11}$$

Question 3: [25%, Work-out question, Learning Objectives 4, and 5]

1. [9%] Consider a continuous time signal x(t) with its Fourier transform $X(j\omega)$ being

$$X(j\omega) = (1+j)\delta(\omega-3) + (1-j)\delta(\omega+3) + \delta(\omega)$$
(12)

Find the expression of x(t).

- 2. [3%] Is x(t) a real-valued signal? Use one quick sentence to justify your answer.
- 3. [1%] Consider a continuous time signal y(t):

$$y(t) = \sum_{k=-2}^{2} \delta(t - 2\pi k)$$
(13)

Is y(t) periodic?

- 4. [10%] Find the expression of its Fourier transform $Y(j\omega)$.
- 5. [2%] Is $Y(j\omega)$ periodic? If so, what is its period? If not, use a quick sentence to justify why $Y(j\omega)$ is not periodic.

 $Question\ 4:\ [15\%,\ Work-out\ question,\ Learning\ Objectives\ 4,\ 5,\ and\ 6]$ Consider the following signal

$$x(t) = \begin{cases} t & \text{if } 0 \le t < 2\\ 4 - t & \text{if } 2 \le t < 4\\ 0 & \text{otherwise.} \end{cases}$$
(14)

- 1. [2%] Plot x(t) for the range of -7 < t < 7.
- 2. [13%] Find the Fourier transform $X(j\omega)$ of x(t).

Question 5: [19%, Multiple Choices] Consider the following AM transmission system. For the transmitter side, for whatever signal x(t), we first pass it through a low-pass filter with cut-off frequency 0.5Hz. Then we multiply it with $\cos(100\pi t)$.

For the receiver side, we first multiply the received signal by $\cos(100\pi t)$ and then pass it through a low-pass filter with cut-off frequency 1Hz. The overall system flow chart is as follows.

Answer the following questions:

- 1. [3%] What is the expression of the impulse response of a low-pass filter with cutoff frequency 0.5Hz.
- 2. [3%] If the original signal x(t) has $X(j\omega) = \mathcal{U}(\omega + 5) \mathcal{U}(\omega 5)$. What is the Fourier transform $Z(j\omega)$ of z(t)?

Hint: If you do not know the answer to the previous subquestion, you can assume that a low-pass filter with cutoff frequency 0.5Hz has $H(j\omega)$ being $\mathcal{U}(\omega+3)-\mathcal{U}(\omega-3)$. You will get full credit if your $Z(j\omega)$ is correct.

3. [9%] Plot the signal y(t) for the range of -4 < t < 4.

Hint 1: If you do not know how to plot y(t), you can simply plot z(t) instead. You will receive 5 points if your plot of z(t) is correct.

Hint 2: If you do not know the answers of the previous questions, you can answer the following question instead: For a frequency-domain signal $X_1(j\omega) = \mathcal{U}(\omega+3) - \mathcal{U}(\omega-3)$, plot assume $x_1(t)$ for the range of $-\pi < t < \pi$. You will receive 5 points if your answer is correct.

4. [4%, Learning Objective 1] If you play the signals z(t) and $\hat{x}(t)$ using the speakers of your computer. Will these two signals sound identical? Use a couple of sentences to justify your answer.

Discrete-time Fourier series

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} \tag{1}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$
⁽²⁾

Continuous-time Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$
(3)

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt \tag{4}$$

Continuous-time Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
⁽⁵⁾

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
(6)

Discrete-time Fourier transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(j\omega) e^{j\omega n} d\omega$$
⁽⁷⁾

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(8)

Laplace transform

$$x(t) = \frac{1}{2\pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{j\omega t} d\omega$$
(9)

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
(10)

Z transform

$$x[n] = r^{n} \mathcal{F}^{-1}(X(re^{j\omega})) \tag{11}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
(12)

			Fourier Series Coefficients		
Property	Section	Periodic Signal			
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a_k b_k		
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$		
Time Shifting	3.5.2	$x(t-t_0)$ $e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$	a_{k-M}		
Conjugation	3.5.6	$x^*(t)$	a_{-k}		
Time Reversal	3.5.3 3.5.4	x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k		
Periodic Convolution		$\int_{T} x(\tau) y(t-\tau) d\tau$	Ta_kb_k		
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty}a_lb_{k-l}$		
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$		
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$ $\left(a_k = a^*\right)$		
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\begin{cases} a_k & \exists_{-k} \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \not \propto a_k = - \not \ll a_{-k} \end{cases}$		
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6 3.5.6	$\begin{aligned} x(t) \text{ real and even} \\ x(t) \text{ real and odd} \\ \begin{cases} x_e(t) = \mathcal{E}\upsilon\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases} \end{aligned}$	a_k real and even a_k purely imaginary and odd $\operatorname{Re}\{a_k\}$ $j\operatorname{Im}\{a_k\}$		
		Parseval's Relation for Periodic Signals			
		$\frac{1}{T}\int_{T} x(t) ^{2}dt = \sum_{k=-\infty}^{+\infty} a_{k} ^{2}$			

PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

three examples, we illustrate this. The last example in this section then demonstrates how properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g(t) with a fundamental period of 4, shown in Figure 3.10 is could determine the Figure 3.10 is could determine the Fourier series representation of g(t) directly from the analysis control (2.30). Instead, when a function of g(t) directly from the analysis control (2.30). tion (3.39). Instead, we will use the relationship of g(t) to the symmetric periodic space wave r(t) in Example 3.5. Before to the wave x(t) in Example 3.5. Referring to that example, we see that, with T = 4 at $T_{1} = 1$ $T_1 = 1,$

g(t) = x(t-1) - 1/2.

Sec. 3.7 Properties of Discrete-Time Fourier Series

Thus, in general, *none* of the finite partial sums in eq. (3.52) yield the exact values of x(t), and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2	PROPERTIES	0F	DISCRETE-TIME	FOURIER	SERIES
-----------	------------	----	---------------	---------	--------

Property	Periodic Signal	Fourier Series Coefficients	
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\left. \begin{array}{c} a_k \\ b_k \end{array} \right\}$ Periodic with b_k period N	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^{*}[n]$ $x[-n]$ $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ $(\text{periodic with period } mN)$	$Aa_{k} + Bb_{k}$ $a_{k}e^{-jk(2\pi/N)n_{0}}$ a_{k-M} a_{-k}^{*} $\frac{1}{m}a_{k} \left(\begin{array}{c} \text{viewed as periodic} \\ \text{with period } mN \end{array} \right)$	
Periodic Convolution Multiplication	$\sum_{\substack{r=\langle N\rangle\\x[n]y[n]}} x[r]y[n-r]$	Na_kb_k $\sum a_lb_{k-l}$	
First Difference	x[n] - x[n-1]	$\frac{1}{(1-e^{-jk(2\pi/N)})a_k}$	
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\begin{array}{c} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{array} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$	
Conjugate Symmetry for Real Signals	x[n] real	$\left\{egin{array}{l} a_k &= a_{-k}^* \ { m Re}\{a_k\} &= { m Re}\{a_{-k}\} \ { m Jm}\{a_k\} &= -{ m Jm}\{a_{-k}\} \ a_k &= a_{-k} \ { m \sphericalangle} a_k &= -{ m \sphericalangle} a_{-k} \end{array} ight.$	
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd	
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \delta v\{x[n]\} & [x[n] real] \\ x_o[n] = \mathbb{O}d\{x[n]\} & [x[n] real] \end{cases}$	$\mathbb{R}e\{a_k\}$ $j\mathcal{G}m\{a_k\}$	
	Parseval's Relation for Periodic Signals		
	$\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2 = \sum_{k=\langle N\rangle} a_k ^2$,	
		······································	

Chap. 3

f eqs. iodic h M = 1; = 4.

sequence in (3.106), the ns, we have

(3.107)

onclude from

if values ov o represent 221

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

ection	Property	Aperiodic signa	al	rourier transform
		x(t) y(t)		Χ(jω) Υ(jω)
4.3.1 4.3.2 4.3.6 4.3.3 4.3.5 4.3.5 4.4 4.5	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time and Frequency Scaling Convolution Multiplication	$ax(t) + by(t)$ $x(t - t_0)$ $e^{j\omega_0 t} x(t)$ $x^*(t)$ $x(-t)$ $x(at)$ $x(t) * y(t)$ $x(t)y(t)$ $\frac{d}{t} x(t)$		$aX(j\omega) + bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ $X(j(\omega - \omega_0))$ $X^*(-j\omega)$ $X(-j\omega)$ $\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$ $X(j\omega)Y(j\omega)$ $\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\theta)Y(j(\omega - \theta))d\theta$ $j\omega X(j\omega)$
4.3.4 4.3.4 4.3.6	Integration Differentiation in Frequency	$dt^{(x)}$ $\int_{-\infty}^{t} x(t)dt$ $tx(t)$		$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $j\frac{d}{d\omega}X(j\omega)$ $(X(j\omega) = X^*(-j\omega)$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real		$\begin{cases} \Re_{\mathcal{C}}\{X(j\omega)\} = \Re_{\mathcal{C}}\{X(-j\omega)\} \\ \Re_{\mathcal{C}}\{X(j\omega)\} = -\Im_{\mathcal{C}}\{X(-j\omega)\} \\ \Re_{\mathcal{C}}\{X(j\omega)\} = X(-j\omega) \\ \Re_{\mathcal{C}}(j\omega) = -\Im_{\mathcal{C}}(x(-j\omega)) \\ \Re_{\mathcal{C}}(j\omega) = -\Im_{\mathcal{C}}(x(-j\omega)) \\ \Re_{\mathcal{C}}(j\omega) \text{ real and even} \end{cases}$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even		$X(j\omega)$ purely imaginary and ω
4.3.3	Symmetry for Real and Odd Signals	$x_{e}(t) = \xi v \{ x(t) \}$	[x(t) real]	$\Re e\{X(j\omega)\}$
4.3.3	Even-Odd Decompo- sition for Real Sig nals	$x_o(t) = \mathbb{O}d\{x(t)\}$	[x(t) real]	j\$m{X(jω)}
4.3.7	Parseval's Rel $\int_{-\infty}^{+\infty} x(t) ^2 dt$	ation for Aperiodic Signation for $A_{periodic}$ Signation $t = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 dz$	gnals 1ω	

Sec. 4.6 Tables of Fourier Properties and of Basic Fourier Transform Pairs

FORM PAIRS

Chap. 4

调查

169(I

0850

 $X_{\rm EV}$

12050 165 52

ADAS -

; we have considre summarized in which each prop-

ansform

important Fourier pply the tools of

transform

iω)

 $(r - \theta) d\theta$

 $(0)\delta(\omega)$

-*jω*) · $\Re e\{X(-j\omega)\}$ $-\mathcal{I}m\{X(-j\omega)\}$ - jω)| $(X(-j\omega))$ ven

iginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_0t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a _k
e ^{jwut}	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, \ k \neq 0$ (this is the Fourier series representation for) (any choice of $T > 0$)
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and x(t+T) = x(t)	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega-k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k \omega_0 T_1}{\pi} \right) = \frac{\sin k \omega_0 T_1}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t), \Re e\{a\}>0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	· · · · · · · · · · · · · · · · · · ·

329