Final Exam of ECE301, Section 2 (Prof. Chih-Chun Wang)

8am-12pm, Friday, December 18, 2015, EE 129.

1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and signature in the space provided on this page, NOW!
2. This is a closed book exam.
3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
4. Use the back of each page for rough work.
5. Neither calculators nor help sheets are allowed.

Name:

Student ID:

I certify that I have neither given nor received unauthorized aid on this exam.

Signature:
Date:

Question 1: [18\%, Work-out question]

1. [1\%] What does the acronym "AM-DSB" stand for?

Prof. Wang wanted to transmit an AM-SSB signal. To that end, he wrote the following MATLAB code.

```
% Initialialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read two different .wav files
[x1, f_sample, N]=wavread('x1');
x1=x1';
[x2, f_sample, N]=wavread('x2');
x2=x2';
% Step 0: Initialize several parameters
W_1=pi*3000;
W_2=pi*5000;
W_3=pi*15000;
W_4=pi*8000;
W_5=????;
W_6=????;
```

\% Step 1: Make the signals band-limited.
$\mathrm{h}=1 /(\mathrm{pi} * \mathrm{t}) . *\left(\sin \left(\mathrm{~W} _1 * \mathrm{t}\right)\right)$;
x1_new=ece301conv(x1, h);
x2_new=ece301conv(x2, h);
\% Step 2: Multiply x1_new and x2_new with a cosine wave.
x1_h=x1_new.*cos(W_2*t);
x2_h=x2_new. $* \cos \left(W _3 * t\right)$;
\% Step 3: Keep one of the two side bands
h_one=h. $*\left(\cos \left(W_{-} 4 * \mathrm{t}\right)\right)$;

```
h_two=1/(pi*t).*(sin(W_5*t))-1/(pi*t).*(sin(W_6*t));
x1_sb=ece301conv(x1_h, h_one);
x2_sb=ece301conv(x2_h, h_two);
% Step 4: Create the transmitted signal
y=x1_sb+x2_sb;
wavwrite(y', f_sample, N, 'y.wav');
```

2. $[1.5 \%]$ What is the bandwidth (Hz) of the signal $\mathrm{x} 1 _$new?
3. [1.5\%] For the first signal x1_new, is this AM-SSB transmitting an upper-side-band signal or a lower-side-band signal?
4. [3\%] What should the values of W_5 and W_6 be in the MATLAB code, if we decide to use a lower-side-band transmission for the second signal x2_new ?

Knowing that Prof. Wang used the above code to generate the "y.wav" file, a student tried to demodulate the output waveform "y.wav" by the following code.

```
% Initialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read the .wav files
[y, f_sample, N]=wavread('y');
y=y';
% Initialize several parameters
W_8=????;
W_9=????;
W_10=????;
W_11=????;
W_12=????;
```

\% Create the low-pass filter.
h_M=1/(pi*t).*(sin(W_8*t));
\% demodulate signal 1
$\mathrm{h} _\mathrm{BPF} 1=1 /(\mathrm{pi} * \mathrm{t}) . *\left(\sin \left(\mathrm{~W} _9 * \mathrm{t}\right)\right)-1 /(\mathrm{pi} * \mathrm{t}) . *\left(\sin \left(\mathrm{~W} _10 * \mathrm{t}\right)\right)$;
$\mathrm{y} 1 _B P F=$ ece301conv ($\mathrm{y}, \mathrm{h} _\mathrm{BPF} 1$) ;
$\mathrm{y} 1=4 * \mathrm{y} 1 _\mathrm{BPF} . * \cos (\mathrm{pi} * 5000 * \mathrm{t})$;
x1_hat=ece301conv(y1,h_M);
sound (x1_hat,f_sample)
\% demodulate signal 2
h_BPF2=1/(pi*t).*(sin(W_11*t)) $-1 /(p i * t) . *\left(\sin \left(W _12 * t\right)\right) ;$
y2_BPF=ece301conv (y,h_BPF2) ;
$\mathrm{y} 2=4 * \mathrm{y} 2 _$BPF. $* \cos (\mathrm{pi} * 15000 * \mathrm{t})$;
x2_hat=ece301conv(y2,h_M) ;
sound (x2_hat,f_sample)
5. [7.5\%] Continue from the previous questions. What should the values of W_8 to W_12 be in the MATLAB code?
6. [4.5\%] It turns out that Prof. Wang's MATLAB code gives one of the two stations an unfair advantage by sandbagging the other station. Please (i) indicate which station
is being sandbagged; (ii) explain/specify what is the problem for that station; and (iii) Describe how to fix the demodulation codes of yours to rectify the problem.

Hint: If you do not know the answers of Q1.2 to Q1.6, please simply draw the AMSSB modulation and demodulation diagrams and mark carefully all the parameter values. You will receive 10 points for Q1.2 to Q1.6.

Question 2: [9\%, Work-out question] Consider a discrete time signal

$$
x[n]= \begin{cases}1 & \text { if } n=0 \text { or } n=1 \tag{1}\\ 0 & \text { if } n=2 \text { or } n=3 \\ \text { periodic with period } 4 & \end{cases}
$$

1. [1.5\%] Plot $x[n]$ for the range of $n=-5$ to 5 .
2. [1.5\%] Is $X\left(e^{j \omega}\right)$ periodic? What is its period?
3. [6\%] Find the expression of the DTFT $X\left(e^{j \omega}\right)$ of $x[n]$ and plot $X\left(e^{j \omega}\right)$ for the range of $-\pi \leq \omega \leq \pi$.

Hint: If you do not know the answer to this subquestion, you can solve the following question instead and you will get 5 points if your answer is correct. Assume $y[n]=$ $\cos \left(\frac{\pi}{3} n+\frac{\pi}{4}\right)$. Find the expression of the DTFT $Y\left(e^{j \omega}\right)$ of $y[n]$ and plot $Y\left(e^{j \omega}\right)$ for the range of $-2 \pi<\omega<2 \pi$.

Question 3: [17\%, Work-out question]
Consider a continuous time signal $x(t)=\sin (3 \pi t)$ and we use a digital voice recorder to convert the continuous time signal $x(t)$ to its discrete time counter part $x[n]$ with sampling frequency 2 Hz . Answer the following questions.

1. [1\%] What is the relationship between $x(t)$ and $x[n]$? A short equation would suffice.
2. [2\%] Plot $x[n]$ for the range of $-4 \leq n \leq 4$.
3. [2.5\%] Continue from the previous question. We use "zero-order hold" to reconstruct the original signal. We denote the output by $\hat{x}_{\mathrm{ZOH}}(t)$. Plot $\hat{x}_{\mathrm{ZOH}}(t)$ for the range of $t=-2$ to 2 .
[Alternative question:] If you do not know the answer to this question, you can assume that the sampling period is $T=\frac{1}{4}$ and the sampled values are $x[n]=$ $\cos (0.5 \pi n)$. Plot the Zero-Order-Hold output $\hat{x}_{\mathrm{ZOH}}(t)$ for the range of $t=-1$ to 1 . If your answer is correct, you will receive 2.5 points.
4. [1.5\%] Let $x_{p}(t)$ denote the impulse train-sampled signal of $x(t)$. What is the relationship between $x(t)$ and $x_{p}(t)$? A short equation would suffice.
5. [3\%] Let $X_{p}(j \omega)$ be the CTFT of $x_{p}(t)$. Find the expression of $X_{p}(j \omega)$ and plot $X_{p}(j \omega)$ for the range of $-4 \pi<\omega<4 \pi$.
6. [5\%] Continue from Question 3.3 (NOT the alternative question). Suppose we use the optimal band-limited reconstruction and denote the output by $\hat{x}_{\text {sinc }}(t)$. Find the expression of $\hat{x}_{\text {sinc }}(t)$ and plot $\hat{x}_{\text {sinc }}(t)$ for the range of $t=-2$ to 2 .
Hint 1: You may need to use the answer of Q3.5 to help you find the expression of $\hat{x}_{\text {sinc }}(t)$.
Hint 2: Even if you do not know the expression of $\hat{x}_{\text {sinc }}(t)$, you should till try to plot $\hat{x}_{\text {sinc }}(t)$ directly. You will get 3.5 points if your plot is correct.
[Alternative question:] If you do not know the answer to this question, you can assume that the sampling period is $T=1 / 4$ and the sampled values are $x[n]=$ $\delta[n]-\delta[n-4]$. Plot the optimal band-limited reconstruction output $\hat{x}_{\text {sinc }}(t)$ for the range of $t=-2$ to 2 . If your answer is correct, you will receive 3.5 points.
7. [2\%] What is the value of the "Nyquist frequency" of $x(t)$? Your answer should be something like 44.1 kHz . There is no need to explain how you find the Nyquist frequency.

Question 4: [8\%, Work-out question]
Consider the following discrete-time processing system for continuous-time signals.

Find the expression of the continuous-time frequency response $H_{c}(j \omega)$.
Hint 1: You might want to consider the $x[n]$ and the $x[n-1500]$ parts separately.
Hint 2: If you do not know the answer to this question, you can answer the following questions instead: (i) If the input is $x(t)=5$, what is the output? (ii) What type of filter is the overall system? A low-pass filter? A high-pass filter? Or a band-pass filter? Use a single sentence to justify your answer. If both your answers are correct, you will still get 4 points.

Question 5: [11\%, Work-out question]
Consider the following discrete-time signals

$$
\begin{align*}
& x_{1}[n]= \begin{cases}4^{n} & \text { if } n \leq 0 \\
0 & \text { if } n \geq 1\end{cases} \tag{2}\\
& x_{2}[n]= \begin{cases}0 & \text { if } n \leq 0 \\
2^{n} & \text { if } n \geq 1\end{cases} \tag{3}
\end{align*}
$$

1. [1\%] What does "ROC" stand for?
2. [5\%] Find the Z-transform of $x_{1}[n]$ and carefully specify and draw its ROC.

Hint 1: If you do not know the answer to this question, you can answer the following alternative question instead: Whether the DTFT of $x_{1}[n]$ exists or not. You will receive 1.5 points if your answer is correct.
3. [3\%] Find the Z-transform of $x_{2}[n]$ and carefully specify and draw its ROC.

Hint 2: If you do not know the answer to this question, you can answer the following alternative question instead: Whether the DTFT of $x_{2}[n]$ exists or not. You will receive 1.5 points if your answer is correct.
Hint 3: The following formula may be useful.

$$
\sum_{k=1}^{\infty} a r^{k-1}= \begin{cases}\frac{1}{1-r} & \text { if }|r|<1 \tag{4}\\ \text { diverges } & \text { if }|r| \geq 1\end{cases}
$$

4. $[2 \%]$ Let $x[n]=x_{1}[n]+x_{2}[n]$. Find the Z-transform of $x[n]$ and carefully specify and draw its ROC.

Question 6: [10\%, Work-out question]
Consider a CT LTI system with impulse response

$$
\begin{equation*}
h(t)=2^{-|t|} \tag{5}
\end{equation*}
$$

Find the output $y(t)$ when the input is $x(t)=\sum_{k=1}^{2} \cos (3 k \pi t)$.

Question 7: [12\%, Work-out question]
Consider $X(j \omega)=\frac{\sin (2 \omega) \sin (\omega)}{\omega^{2}}$. Find its inverse Fourier transform $x(t)$ and plot it for the range of $-4<t<4$.

Question 8: [15\%, Multiple-choice question] Consider two signals

$$
h_{1}(t)= \begin{cases}\cos (t) & \text { if }|t|<0.5 \pi \tag{6}\\ 0 & \text { if } 0.5 \pi \leq|t|<1.5 \pi \\ \cos (t) & \text { if } 1.5 \pi \leq|t|<2.5 \pi \\ 0 & \text { if } 2.5 \pi \leq|t|<3.5 \pi \\ \vdots & \vdots \\ \cos (t) & \text { if }(k+0.5) \pi \leq|t|<(k+1.5) \pi \text { for some odd integer } k \\ 0 & \text { if }(k+0.5) \pi \leq|t|<(k+1.5) \pi \text { for some even integer } k\end{cases}
$$

and

$$
\begin{equation*}
h_{2}[n]=\sum_{k=0}^{\max (n, 0)} k 2^{-k} \tag{7}
\end{equation*}
$$

1. [1.25\%] Is $h_{1}(t)$ periodic?
2. [1.25\%] Is h_{2} [n] periodic?
3. [1.25\%] Is $h_{1}(t)$ even or odd or neither?
4. [1.25\%] Is $h_{2}[n]$ even or odd or neither?
5. [1.25\%] Is $h_{1}(t)$ of finite energy?
6. [1.25\%] Is $h_{2}[n]$ of finite energy?

Suppose the above two signals are also the impulse responses of two LTI systems: System 1 and System 2, respectively.

1. [1.25\%] Is System 1 memoryless?
2. [1.25\%] Is System 2 memoryless?
3. [1.25\%] Is System 1 causal?
4. [1.25\%] Is System 2 causal?
5. [1.25\%] Is System 1 stable?
6. [1.25\%] Is System 2 stable?

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X(j \omega) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10 . could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{j M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=\{N\rangle} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Running Sum Conjugate Symmetry for Real Signals	$\sum_{k=-\infty}^{n} x[k]\binom{\text { finite valued and periodic only }}{\text { if } a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}_{\ell}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=0 d\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
	Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$	

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Parseval's Relation for Aperiodic Signals

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|X(j \omega)|^{2} d \omega
$$

FORM PAIRS

, we have consid. re summarized in which each prop. important Fourier upply the tools of
transform
; ω)
, $-\theta) d \theta$
$\cdot(0) \delta(\omega)$

$-j \omega)$

$\mathcal{P}_{\mathcal{e}}\{X(-j \omega)\}$
$-\mathscr{S}_{n}\{X(-j \omega)\}$
$-j \omega) \mid$
$\lceil X(-j \omega)$
ven
tginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0 j} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0}{ }^{\prime}}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$\begin{aligned} & a_{1}=1 \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=a_{-1}=\frac{1}{2} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\sin \omega_{0} t$	$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=-a_{-1}=\frac{1}{2 j} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$x(t)=1$	$2 \pi \delta(\omega)$	$a_{0}=1, \quad a_{k}=0, k \neq 0$ (this is the Fourier series representation for)
Periodic square wave $x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & T_{1}<\|t\| \leq \frac{T}{2}\end{cases}$ and $x(t+T)=x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right)$	$\frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)$	$a_{k}=\frac{1}{T}$ for all k
$x(t) \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \omega T_{1}}{\omega}$	-
$\frac{\sin W t}{\pi t}$	$X(j \omega)= \begin{cases}1, & \|\omega\|<W \\ 0, & \|\omega\|>W\end{cases}$	-
$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$e^{-a t} u(t), \mathcal{R} e\{a\}>0$	$\frac{1}{a+j \omega}$	-
$t e^{-a t} u(t), \mathcal{R e}\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\begin{aligned} & \frac{n^{n-1}}{(n-1)!} e^{-a t} u(t), \\ & \mathfrak{Q}\{a\}>0 \end{aligned}$	$\frac{1}{(a+j \omega)^{n}}$	-

table 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		$x[n]$	$X\left(e^{j \omega}\right)$ periodic with
		$y[n]$	$\left.Y\left(e^{j \omega}\right)\right\}$ period 2π
5.3.2	Linearity	$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$
5.3.3	Time Shifting	$x\left[n-n_{0}\right]$	$e^{-j \omega n_{0}} X\left(e^{j \omega}\right)$
5.3.3	Frequency Shifting	$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$
5.3.4	Conjugation	$x^{*}[n]$	$X^{*}\left(e^{-j \omega}\right)$
5.3.6	Time Reversal	$x[-n]$	$X\left(e^{-j \omega}\right)$
5.3.7	Time Expansion	$x_{(k)}[n]= \begin{cases}x[n / k], & \text { if } n=\text { multiple of } k \\ 0, & \text { if } n \neq \text { multiple of } k\end{cases}$	$X\left(e^{j k \omega}\right)$
5.4	Convolution	$x[n] * y[n]$	$X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)$
5.5	Multiplication	$x[n] y[n]$	$\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$
5.3.5	Differencing in Time	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) X\left(e^{j \omega}\right)$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j \omega}} X\left(e^{j \omega}\right)$
5.3.8	Differentiation in Frequency	$n \times[n]$	$\begin{aligned} & +\pi X\left(e^{j 0}\right) \sum_{k=-\infty}^{+\infty} \delta(\omega-2 \pi k) \\ & j \frac{d X\left(e^{j \omega}\right)}{d \omega} \end{aligned}$
5.3.4	Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right) \\ \operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}=\mathcal{R e}^{-j}\left\{X\left(e^{-j \omega}\right)\right\} \\ \mathscr{I}_{n z\{ }\left\{X\left(e^{j \omega}\right)\right\}=-\mathcal{I}_{m}\left\{X\left(e^{-j \omega}\right)\right\} \\ \left\|X\left(e^{j \omega}\right)\right\|=\left\|X\left(e^{-j \omega}\right)\right\| \\ \Varangle X\left(e^{j \omega}\right)=-\Varangle X\left(e^{-j \omega}\right) \end{array}\right.$
5.3.4	Symmetry for Real, Even Signals	$x[n]$ real an even	$X\left(e^{j \omega}\right)$ real and even .
5.3.4	Symmetry for Real, Odd Signals	$x[n]$ real and odd	$X\left(e^{j \omega}\right)$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$\begin{array}{ll} x_{e}[n]=\mathcal{E v}\{x[n]\} & {[x[n] \text { real }]} \\ x_{o}[n]=\operatorname{dd}\{x[n]\} & {[x[n] \text { real }]} \end{array}$	
5.3.9	Parseval's Re $\sum_{n=-\infty}^{+\infty}\|x[n]\|$	ation for Aperiodic Signals $=\frac{1}{2 \pi} \int_{2 \pi}\left\|X\left(e^{j \omega}\right)\right\|^{2} d \omega$	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_{k} of a periodic signal $x[n]$ are themselves a periodic sequence, we can expand the sequence a_{k} in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_{k} are the values of $(1 / N) x[-n]$ (i.e., are proportional to the values of the original

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_{k} e^{j k(2 n / N) n}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	a_{k}
$e^{j \omega_{0} n}$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta\left(\omega-\omega_{0}-2 \pi l\right)$	(a) $\begin{aligned} & \omega_{0}=\frac{2 \pi m}{N} \\ & a_{k}= \begin{cases}1, & k=m, m \pm N, m \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_{0} n$	$\pi \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)+\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} \omega_{0} & =\frac{2 \pi m}{N} \\ a_{k} & = \begin{cases}\frac{1}{2}, & k= \pm m, \pm m \pm N, \pm m \pm 2 N \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_{0} n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)-\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} & \omega_{0}\end{aligned} \quad=\frac{2 \pi r}{N} \quad \begin{aligned} \frac{1}{2 j}, & k=r, r \pm N, r \pm 2 N, \ldots,\end{aligned}, \begin{aligned}-\frac{1}{2 j}, & k=-r ;-r \pm N,-r \pm 2 N \\ 0, & \text { otherwise }\end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$x[n]=1$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta(\omega-2 \pi l)$	$a_{k}= \begin{cases}1, & k=0, \pm N, \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases}$
Periodic square wave $x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & N_{1}<\|n\| \leq N / 2\end{cases}$ and $x[n+N]=x[n]$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$\begin{aligned} & a_{k}=\frac{\sin \left[(2 \pi k / N)\left(N_{1}+\frac{1}{2}\right)\right]}{N \sin [2 \pi k / 2 N]}, k \neq 0, \pm N, \pm 2 N, \\ & a_{k}=\frac{2 N_{1}+1}{N}, k=0, \pm N, \pm 2 N, \ldots \end{aligned}$
$\sum_{k=-\infty}^{+\infty} \delta[n-k N]$	$\frac{2 \pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$a_{k}=\frac{1}{N}$ for all k
$a^{n} u[n], \quad\|a\|<1$	$\frac{1}{1-a e^{-j \omega}}$	-
$x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & \|n\|>N_{1}\end{cases}$	$\frac{\sin \left[\omega\left(N_{1}+\frac{1}{2}\right)\right]}{\sin (\omega / 2)}$	-
$\begin{aligned} & \frac{\sin W n}{\pi n}=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right) \\ & 0<W<\pi \end{aligned}$	$\begin{aligned} & X(\omega)= \begin{cases}1, & 0 \leq\|\omega\| \leq W \\ 0, & W<\|\omega\| \leq \pi\end{cases} \\ & X(\omega) \text { periodic with period } 2 \pi \end{aligned}$	-
$\delta[n]$	1	-
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{+\infty} \pi \delta(\omega-2 \pi k)$	$-$
$\delta\left[n-n_{0}\right]$	$e^{-j \omega \mu_{0}}$	
$(n+1) a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$	
$\frac{(n+r-1)!}{n!(r-1)!} a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{r}}$	

 'solez 'solod a asuodsar uopounfuәธ! xə [duos әut woIf 'OSIV '(Souənbarf จчt 10 uoupu aspudu! pue
(9601)
'LSOI Uo

amadord 8 t
01 pue 6 S.Ie
$t \mathrm{SOI}$ suons
כsay.L $81^{\circ} 0$
nolloy S pue
radord aqt
sied unofst
jo sumogsues
col गdurex
*ay 10 ss

TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $\delta[n-m]$	z^{-m}	$\begin{aligned} & \text { All } z \text {, except } \\ & 0 \text { (if } m>0 \text {) or } \\ & \infty(\text { if } m<0 \text {) } \end{aligned}$
5. $\alpha^{n} u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>\|\alpha\|$
6. $-\alpha^{n} u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|<\|\alpha\|$
7. $n \alpha^{n} u[n]$	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|>\|\alpha\|$
8. $-n \alpha^{n} u[-n-1]$	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|<\|\alpha\|$
9. $\left[\cos \omega_{0} n\right] u[n]$	$\frac{1-\left[\cos \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
10. $\left[\sin \omega_{0} n\right] u[n]$	$\frac{\left[\sin \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
11. $\left[r^{n} \cos \omega_{0} n\right] u[n]$	$\frac{1-\left[r \cos \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
12. $\left[r^{n} \sin \omega_{0} n\right] u[n]$	$\frac{\left[r \sin \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

10.7.1 Causality

A causal LTI system has an impulse response $h[n]$ that is zero for $n<0$, and therefore is right-sided. From Property 4 in Section 10.2 we then know that the ROC of $H(z)$ is the exterior of a circle in the z-plane. For some systems, e.g., if $h[n]=\delta[n]$, so that $H(z)=1$. the ROC can extend all the way in to and possibly include the origin. Also, in general, for a right-sided impulse response, the ROC may or may not include infinity. For example if $h[n]=\delta[n+1]$, then $H(z)=z$, which has a pole at infinity. However, as we say if Property 8 in Section 10.2, for a causal system the power series

$$
H(z)=\sum_{n=0}^{\infty} h[n] z^{-n}
$$

does not include any positive powers of z. Consequently, the ROC includes infinity. Sump marizing, we have the follow principle:

A discrete-time LTI system is causal if and only if the ROC of its system function is the exterior of a circle, including infinity.

