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. Use the back of each page for rough work.
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Question 1: [30%, Work-out question, Learning Objectives 3, 4, and 5]
Consider a discrete-time signal

[ 27" if —4<n<3
xn| =
periodic with period N =8

and let a; denote its Fourier series coefficients.
1. [8%] Compute the value of ay.
2. [8%] Compute the value of S, _ (—1)*ay.
3. [8%] Compute the value of S77_ |ax|>.

We have another signal y[n], for which the corresponding Fourier series coefficients are

, [k i2<k<4
T o ifo<k<lor5<k<7

Define z[n| = z[n]y[n] and denote the corresponding Fourier series coefficients by c¢y.

4. [6%)] Write down the expression of ¢z in terms of ay.






Question 2: [22%, Work-out question, Learning Objectives 1, 4, and 5] Consider the
following signal:

sin(t) fo<t<nm
z(t) =<0 ifr<t<2onm
periodic with period T' = 27

and denote the corresponding Fourier series coefficients by ay.
1. [4%)] Plot z(t) for the range of =37 <t < 3.
2. [8%] Compute the value of ay.

3. [10%] Compute the value of a;.






Question 3: [16%, Work-out question, Learning Objectives 3, 4, and 5] Consider the
following signal:

1 ifo<t<l1
z(t) =<0 ifl1<t<4
periodic with period T'= 4

and denote its Fourier series coefficients by ay.

1. [6%)] Assuming you know the values of a, plot X (jw) for the range of —1.17 <t <
1.17.

We then pass z(t) through an ideal low-pass filter with cutoff frequency % and denote the
output as y(t).
2. [10%] Plot Y (jw) for the range of —1.17 <t < 1.1.

Hint 1: Your answer for this sub-question should not use a; anymore. Namely,
you may have to compute some a; values for this sub-question. If your answer still
contains some a;, values, then you will receive 8 points instead.

Hint 2: If you do not know the expression of X (jw) in the first sub-question, you
can assume

sin(3w)
w

X(jw) =

and use it to plot Y (jw). You will still receive full credit (10 points) if your answer
1s correct.






Question 4: [20%, Work-out question, Learning Objectives 3, 4, and 5] Consider an LTI
system for which the input/output relationship is governed by the following differential
equation.

o(0) + 25 y(1) = 22(1)

We also assume that the LTI system is initially rest. That is, if the input is z(¢) = 0,
then the output is y(t) = 0.

1. [8%] Find out the impulse response h(t) of this system.
2. [12%)] Find out the output y(¢) when the input is z(t) = e 2=Vt — 1).

Hint: If you do not know the h(t) (or equivalently H(jw)), the answer to the first sub-

question, you can assume H (jw) = ﬁ You will get full credit for the second sub-

T (I+jw
questions.






Question 5: [12%, Work-out question, Learning Objectives 3, 4, and 5]
Consider continuous-time signals z(t) = % and h(t) = w

Define y(t) = (z(t) cos(t))*h(t). That is, y(t) is obtained by multiplying x(¢) by cos(t)
and then passing it through an LTT system with impulse response h(t).
Plot Y (jw) for the range of —4 < w < 4.






Discrete-time Fourier series
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Continuous-time Fourier transform
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TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES
S ———
Property Section Periodic Signal Fourier Series Coefficients
x(f)) Periodic with period T and ay
¥(t) fundamental frequency wo = 2T by
Linearity 351 Ax(®) + By(®) Aa; + Bb;
Time Shifting 352 x(t — to) ape ol = age ey
Frequency Shifting eiMant x(1) = /M (27/T) x(2) Q-
Conjugation 356 x*(t) ay
Time Reversal 3.5.3 x(—1t) a-
Time Scaling 3.54 x(at), >0 (periodic with period T/a) ax
Periodic Convolution J x(T)y(t — Td7 Taxby
T
4o
Multiplication 3.5.5 x(0)y® Z aiby-
J= -
. e dx(t . 2
Differentiation d(t) koot = JkTW a
t it 1\ d .
Integration J x(H) dt(ﬁr{1 © .va ved fm _l_ ar = _l___
o periodic only if a0 = 0) Jkawo jkQ2mIT)
ap = aik
Refar} = Relai}
Conjugate Symmetry for 356 x(¢) real Imiar} = —dmia_y)
Real Signals laxl = lai ~
Yay = —Xa-
Real and Even Signals 35.6 x(t) real and even ay real and even ;
Real and Odd Signals 35.6 x(7) real and odd ay, purely imaginary
Even-Odd Decomposition {xe(t) = &v{x(n)} [x(r) real] Refayt
of Real Signals x,(1) = Od{x(0} [x(p) real] jImiat
Pparseval’s Relation for Periodic Signals
1 I
3| opar = >l
three examples, we illustrate this. The last example in this section then demons
d to characterize the signal in great detail.

propetties of a signal can be use

Example 3.6

Consider the signal g(z) with a fundamental period of

. could determine the Fourier s
tion (3.39). Instead,
wave x(f) in Example
T[ = 1,

3.5. Referring to that example,

g®) = x(t -1~ 1/2.

eries representation of g(2) direct! :
we will use the relationship of g(r) to the symumetric P&

4, shown in Figure
1y from the ana

we see that, with
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Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(¢),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property

Periodic Signal

Fourier Series Coefficients

Time Shifting
‘Frequency Shifting
Conjugation

Time Reversal

Time Scaling

eriodic Convolution

x[n] } Periodic with period N and
y[n] | fundamental frequency wo = 27/N

Ax[n] + By[n]

x[n = ny]
ejM(Z-n'/N)nx[n]

x"[n]
x[~n]
x[n/m], if n is a multiple of m
x(m) [n] = . . .
0, if n is not a multiple of m
(periodic with period mN)

> xlrlyln—r]

r=(N)

x[n]yln]

x[n] = x[n - 1]

Z x[K] (ﬁmte valued and periodic only)
e ifay =0

x[n] real

x[n] real and even
x[n] real and odd

{ xe[n] = &v{x[n])} [x[n] real]
x,[n] = Od{x[n]} [x[n]real]

Parseval’s Relation for Periodic Signals

¥ S P = S faf

n=(N) k=(N)

ay ] Periodic with
period N

a e~ ik@miNm
af- M
A
a—i

1  (viewed as periodic
m (with period mN )

Nakb,;

Z aibe;

1=(N)
(1 —- e—jk(ZvrIN))ak

1
((1 — e~ JkETIN)y )a"
ay = aik
Refa,} = Refa_y}
Imlay} = —Imla_}
la] = la-|
Lay = —Ya_;
ay, real and even
a, purely imaginary and odd
Gefa,}
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4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consi
ered some of the important properties of the Fourier transform. These are summarized
Table 4.1, in which we have also indicated the section of this chapter in which each pro
erty has been discussed. ~~

In Table 4.2, we have assembled a list of many of the basic and important Four
transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section Property Aperiodic signal Fourier transform k
x() X(jw)
¥ Y(jw)
43.1 Linearity ax(®) + by(® aX(jw) + b¥( jo)
432 Time Shifting x(t — 1) e i X(jw)
43.6 Frequency Shifting el x(t) X(jl@ — wo))
433 Conjugation x'(®) X (—jw)
43.5 Time Reversal x(—1) X(—jw)
435 Time and Frequency x(at) —1— (B—)
. la"\ a
Scaling
4.4 Convolution x(8) * y(t) X( jwﬂjq))’
45 Multiplication Xy 2—‘1—,[“&0 B)Y(j(w — O)d6
434 Differentiation in Time g;x(t) joX(jo)
t
434 Integration J x(r)dt J—,l(;X( jw) + 7X(0)86(w)
43.6 Differentiation in tx(t) j d—d—X (jow)
Frequency @
X(jw) = X"(~jo)
Re{X(jw)} = RelX(
433 Conjugate Symmetry x(t) real ImiX(jw)} = ~ 9
for Real Signals lX(jw)l _ lX(—jw)l ‘
LX(jw) = — X
433 Symmetry for Realand  x(f) real and even X(jw) real and even
Even Signals .
433 Symmetry for Realand  x(?) real and odd X(jw) purely imagipary
Odd Signals

%) = Svix(®}  [x() reall Re{X(jw)}

433 Even-Odd Decompo- (f) = Od{x(®) () real] )

gition for Real Sig-

437 Parseval’s Relation for Aperiodic Signals
+oo 1 +eo
200 o Y
[ixopar = 5| KGRl
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y We thVe COHSiCL

Fourier series coefficients

T€ summarizeg in Signal Fourier transform (if periodic)
Whlch eaCh T b o
prop. Z ageltn 27 Z ad(w — kwg) a,
. F= o P
tmportant Fourje,
1pPly the tools of gJwut 2m8(w — wy) a; = 1
a; = 0, otherwise
P 8(w ~ wo) + B(w + 1= =y
“transform coswot (o(@ ~ o) (@ +wo)l a, = 0, otherwise
h\
!
i m a = —a., = 5
t —[6(w — wg) — §(w + 2
Sinwy j[ (w — wp) (@ + wp)] a = 0, otherwise
;.)_ ........ a=1 a=0 k=0
@ x(n =1 27 6(w) this is the Fourier series representation for
any choice of T > 0
Periodic square wave ]
p=|b M=<D &= 2 sin kwoT T kooTi\ _ sin kwoT ‘
W0 <=1 S 2T g g,y @l sinc( 20 '): it LL
“— k T T km
and k=-e
x(t+T) = x(2)
)y —@)de
it 2m <5 27k 1
"Zwa(: - nT) 7,;“,8(‘0 - —T—) & = = forall k
(0)d(w) 1, <, 2sinwT),
x(®) e —
0, l>T, )

. sin Wt . L |of<w :
@) e X(jo) = [O :w: >W - :
Re{X (- jow)} » \
—Im{X(— jw)} 80 1 _

- jo)| '
X(—jw) u(®) - b jiw + 7 8(w) —
ven
\ginary and odd 8(t ~ o) e -
1
—at p—
e “u(t), Re{a} > 0 it e
te % u(t), Refa} > 0 —1— — t
’ (a+ jw) "
o _“<,l:1l)y e~ u(t), _1__ .
Refa} > 0 (a+ jo)
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