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Question 1: [15%, Work-out question]

1. [1%] What does the acronym “AM-DSB” stands for?

Prof. Wang wanted to transmit an AM-SSB signal. To that end, he wrote the following
MATLAB code.

% Initialialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read two different .wav files
[x1, f_sample, N]=wavread(’x1’);
x1=x1’;
[x2, f_sample, N]=wavread(’x2’);
x2=x2";

% Step 0: Initialize several parameters
W_1=pi*3000;
W_2=pi*4000;
W_3=pi*x12000;
W_4=pix7000;
W_5=pi*4000;

..... )

W_7=7777;

% Step 1: Make the signals band-limited.
h=1/(pi*t) . *(sin(W_1%t));
x1_new=ece301conv(xl, h);
x2_new=ece301conv(x2, h);

% Step 2: Multiply x1_new and x2_new with a cosine wave.
x1_h=x1_new.*cos(W_2*t);
x2_h=x2_new.*cos (W_3*t) ;

% Step 3: Keep one of the two side bands
h_one=1/(pix*t) .*(sin(W_4*t))-1/(pix*t) .*(sin(W_5%*t));
h_two=1/(pix*t) .*(sin(W_6%*t))-1/(pi*t) .*x(sin(W_7%*t));



x1_sb=ece301conv(xl_h, h_one);
x2_sb=ece301conv(x2_h, h_two);

% Step 4: Create the transmitted signal
y=x1_sb+x2_sb;
wavwrite(y’, f_sample, N, ’y.wav’);

2. [1.5%] What is the bandwidth (Hz) of the signal x1 new?

3. [2.5%] Is this AM-SSB transmitting an upper-side-band signal or a lower-side-band
signal?

4. [4%] What should the values of W_6 and W_7 be in the MATLAB code?



Knowing that Prof. Wang used the above code to generate the “y.wav” file, a student
tried to demodulate the output waveform “y.wav” by the following code.

% Initialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read the .wav files
[y, f_sample, N]=wavread(’y’);

y=y’;

% Initialize several parameters
W_8=7777;
W_9="7777;
W_10="7777;

% Create the low-pass filter.
h_M=1/(pi*t) .*(sin(W_8%*t));

% Create two band-pass filters.
hBPF_1=1/(pi*t) .*(sin(pi*4000%*t))-1/(pi*t) .*(sin(pi*1000%*t));
hBPF_2=1/(pi*t) .*(sin(pi*15000%t))-1/(pi*t) .*(sin(pi*12000%t)) ;

% demodulate signal 1
y1BPF=ece301conv(y,hBPF_1);
y1=4%y1BPF.*cos(W_9%t) ;
x1_hat=ece301lconv(yl,h_M);

sound (x1_hat,f_sample)

% demodulate signal 2
y2BPF=ece301conv(y,hBPF_2) ;
y2=4*y2BPF .*cos (W_10%*t) ;
x2_hat=ece301conv(y2,h_M);

sound (x2_hat,f_sample)

5. [3%] Continue from the previous question. What should the values of W_8 to W_10
in the MATLAB code?

6. [4%)] It turns out that using the above MATLAB code, we can hear the sound
properly when playing “sound(x2_hat,f_sample)” but there is some problem when



playing “sound(x1_hat,f sample)”. Please (i) describe how it will sound when play-
ing “sound(x1_hat,f sample)” and (ii) Describe how we can fix the code so that we
can hear x1_hat propertly.

Hint: If you do not know the answers of Q1.2 to Q1.6, please simply draw the
AMSSB modulation and demodulation diagrams and mark carefully all the param-
eter values. You will receive 9 points for Q1.2 to Q1.6.



Question 2: [27%, Work-out question] We sample a continuous-time signal z(¢) with a
sampling frequency 3Hz. The sampled value array x[n] = §[n — 1].

1. [1%] What is the sampling period? (Make sure you write down the correct unit.)

2. [3%] We use xgync(t) to denote the reconstructed signal based on the optimal band-
limited reconstruction. Plot @gync(t) for the range of —1 <t < 1.

We sample another continuous-time signal y(¢) with a sampling frequency 3Hz. The
sampled value array is

0 ifn=0or2
1 ifn=1
— 1
vl =1 ifn=—1 o

periodic with period 4

3. [4%)] We use yrin(t) to denote the reconstructed signal based on linear interpolation.
Plot ypin(¢) for the range of —1 <t < 1.
We use yzon(t) to denote the reconstructed signal based on Zero-Order Hold. Plot
yzou(t) for the range of —1 <¢ < 1.

4. [3%] Which one of the following statements can possibly be true?
() y(t) = S35 8(t — 1 — 4k) — (¢ — 3 — 4k);
(ii) y(t) = cos(%);
(iii) y(t) = Slﬂ(?’”),
(iv) y(t) = cos(2nt); and
(v) None of the above.

Hint 1: This is a multiple choice question. You do not need to justify your answer.
Hint 2: This question basically asks you to look at the sampled values y[n| and
deduce which of the above three signals can possibly be the original y(t) signal?

5. [6%] Find out the DTFT of y[n].
Hint: You should be able to answer this sub-question without using the answers to
the previous 2 sub-questions.

6. [5%] Let y,(t) denote the impulse-train-sampled signal with the sampling period 3
Hz. Plot Y, (jw) for the range of —87 < w < 8.

Hint: You would need to use the DTFT of y[n] found in the previous sub-question
to find the answer for this sub-question. If you do not know the answer to the
previous sub-question, you can assume that the DTFT of y[n] is

1 if0<|w <%
Y(e™) =<0 if 2 <|wl<m (2)
periodic with period 27



7. [2.5%, advanced] We use ysync(t) to denote the reconstructed signal based on the
optimal reconstruction. Write down the expression of ysync(%).

8. [2.5%, advanced] We now perform some discrete-time signal processing with w(n] =
y[n] + y[n + 3] and use wgync(t) to denote the reconstructed signal based on the

optimal reconstruction. Write down the expression of wgyne(t).















Question 3: [14%, Work-out question] Consider the following impulse-train sampling and
reconstruction system, which contains the following 2 steps.
Step 1: For any given signal z(t), we first perform impulse train sampling with sam-
pling period 0.5 seconds. The final impulse-train sampled signal is denoted by z,(t).
Step 2: Use a perfect band-limited reconstruction to convert x,(t) back to z(t).

1. [2%] Write down the mathematical relationship between x(t) and z,(t). Your answer
should look like “x,(t) = x(t)---".

2. [3%)] Suppose the CTFT of z(t) is

1 if 37n<w<3r
X(jw) = - . 3
(je) {O otherwise )

Plot X,(jw), the CTFT of z,(t), for the range of —67 < w < 6.

3. [4%] Draw the diagram how to derive z(t) from z,(t). Your diagram (flow chart)
needs to be carefully labeled.

4. [5%] Continue from the previous question. Plot X (jw), the CTFT of &(t), for the
range of —6m < w < 6.

Hint: If you do not know the answer, you can assume

sm(gm))

(4)

7t

y(t) = (x(t) cos(4mt)) * (

and plot Y (jw) for the range of —67m < w < 6m7. You will get 4 points for this
sub-question if your answer is correct.












Question 4: [7%, Work-out question]
1. [1%] What is the acronym “ROC” stands for (when considering the Z-transform)?

We know that
ol = (3) wz- 5)

2. [6%)] Find the Z-transform X(z), write down the expression of the corresponding
ROC, and plot the ROC.

Hint: You may need to use the formula: Y7 ar* ' = 12 if |r| < 1.












Question 5: [12%, Work-out question] Consider a continuous-time system:
t+2

y(t) =a(t +3) + / x(s)ds. (6)

t—2
1. [7%] Find the frequency response of the system H(jw).

2. [5%] When the input is z(t) = Zizl (%)kcos (4¢t), find the corresponding output
y(t).
Hint: If you do not know how to solve this question, you can assume that

wH+n f—a7<w<0
Hjw)=q¢rm—w if0<w<7 (7)
0 otherwise

You will still receive full credit if your answer is correct using the given H (jw).












Question 6: [9%, Work-out question] Consider two discrete-time signals

el if 0 <n <40
xz[n] =<0 if 40 <n < 80 (8)
periodic with period 80

1. [5%] Denote the DTFS x[n]| by aj. Find the general expression of a; for all possible
k values.
Hint: You may need to use the formula

S ekl = “(1%:() when r # 1.

2. [2%] Find out the value of 3217 ay.

3. [2%] Find out the value of 317 |ax|*.












Question 7: [15%, Multiple-choice question] Consider two signals

- o 12
and
ha[n] = cos(3n) + sin(2n) (10)

1. [1.25%] Is h4(t) periodic?

2. [1.25%)] Is hg[n| periodic?

3. [1.25%] Is hy(t) even or odd or neither?
4. [1.25%] Is he[n] even or odd or neither?
5. [1.25%] Is hq(t) of finite energy?

6. [1.25%] Is he[n] of finite power?

Suppose the above two signals are also the impulse responses of two LTI systems:
System 1 and System 2, respectively.

1. [1.25%)] Is System 1 memoryless?
2. [1.25%)] Is System 2 memoryless?
3. [1.25%] Is System 1 causal?
4. [1.25%] Is System 2 causal?
5. [1.25%)] Is System 1 stable?

6. [1.25%)] Is System 2 stable?
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TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES
S ———
Property Section Periodic Signal Fourier Series Coefficients
x(f)) Periodic with period T and ay
¥(t) fundamental frequency wo = 2T by
Linearity 351 Ax(®) + By(®) Aa; + Bb;
Time Shifting 352 x(t — to) ape ol = age ey
Frequency Shifting eiMant x(1) = /M (27/T) x(2) Q-
Conjugation 356 x*(t) ay
Time Reversal 3.5.3 x(—1t) a-
Time Scaling 3.54 x(at), >0 (periodic with period T/a) ax
Periodic Convolution J x(T)y(t — Td7 Taxby
T
4o
Multiplication 3.5.5 x(0)y® Z aiby-
J= -
. e dx(t . 2
Differentiation d(t) koot = JkTW a
t it 1\ d .
Integration J x(H) dt(ﬁr{1 © .va ved fm _l_ ar = _l___
o periodic only if a0 = 0) Jkawo jkQ2mIT)
ap = aik
Refar} = Relai}
Conjugate Symmetry for 356 x(¢) real Imiar} = —dmia_y)
Real Signals laxl = lai ~
Yay = —Xa-
Real and Even Signals 35.6 x(t) real and even ay real and even ;
Real and Odd Signals 35.6 x(7) real and odd ay, purely imaginary
Even-Odd Decomposition {xe(t) = &v{x(n)} [x(r) real] Refayt
of Real Signals x,(1) = Od{x(0} [x(p) real] jImiat
Pparseval’s Relation for Periodic Signals
1 I
3| opar = >l
three examples, we illustrate this. The last example in this section then demons
d to characterize the signal in great detail.

propetties of a signal can be use

Example 3.6

Consider the signal g(z) with a fundamental period of

. could determine the Fourier s
tion (3.39). Instead,
wave x(f) in Example
T[ = 1,

3.5. Referring to that example,

g®) = x(t -1~ 1/2.

eries representation of g(2) direct! :
we will use the relationship of g(r) to the symumetric P&

4, shown in Figure
1y from the ana

we see that, with
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Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(¢),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property

Periodic Signal

Fourier Series Coefficients

Time Shifting
‘Frequency Shifting
Conjugation

Time Reversal

Time Scaling

eriodic Convolution

x[n] } Periodic with period N and
y[n] | fundamental frequency wo = 27/N

Ax[n] + By[n]

x[n = ny]
ejM(Z-n'/N)nx[n]

x"[n]
x[~n]
x[n/m], if n is a multiple of m
x(m) [n] = . . .
0, if n is not a multiple of m
(periodic with period mN)

> xlrlyln—r]

r=(N)

x[n]yln]

x[n] = x[n - 1]

Z x[K] (ﬁmte valued and periodic only)
e ifay =0

x[n] real

x[n] real and even
x[n] real and odd

{ xe[n] = &v{x[n])} [x[n] real]
x,[n] = Od{x[n]} [x[n]real]

Parseval’s Relation for Periodic Signals

¥ S P = S faf

n=(N) k=(N)

ay ] Periodic with
period N

a e~ ik@miNm
af- M
A
a—i

1  (viewed as periodic
m (with period mN )

Nakb,;

Z aibe;

1=(N)
(1 —- e—jk(ZvrIN))ak

1
((1 — e~ JkETIN)y )a"
ay = aik
Refa,} = Refa_y}
Imlay} = —Imla_}
la] = la-|
Lay = —Ya_;
ay, real and even
a, purely imaginary and odd
Gefa,}
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4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consi
ered some of the important properties of the Fourier transform. These are summarized
Table 4.1, in which we have also indicated the section of this chapter in which each pro
erty has been discussed. ~~

In Table 4.2, we have assembled a list of many of the basic and important Four
transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section Property Aperiodic signal Fourier transform k
x() X(jw)
¥ Y(jw)
43.1 Linearity ax(®) + by(® aX(jw) + b¥( jo)
432 Time Shifting x(t — 1) e i X(jw)
43.6 Frequency Shifting el x(t) X(jl@ — wo))
433 Conjugation x'(®) X (—jw)
43.5 Time Reversal x(—1) X(—jw)
435 Time and Frequency x(at) —1— (B—)
. la"\ a
Scaling
4.4 Convolution x(8) * y(t) X( jwﬂjq))’
45 Multiplication Xy 2—‘1—,[“&0 B)Y(j(w — O)d6
434 Differentiation in Time g;x(t) joX(jo)
t
434 Integration J x(r)dt J—,l(;X( jw) + 7X(0)86(w)
43.6 Differentiation in tx(t) j d—d—X (jow)
Frequency @
X(jw) = X"(~jo)
Re{X(jw)} = RelX(
433 Conjugate Symmetry x(t) real ImiX(jw)} = ~ 9
for Real Signals lX(jw)l _ lX(—jw)l ‘
LX(jw) = — X
433 Symmetry for Realand  x(f) real and even X(jw) real and even
Even Signals .
433 Symmetry for Realand  x(?) real and odd X(jw) purely imagipary
Odd Signals

%) = Svix(®}  [x() reall Re{X(jw)}

433 Even-Odd Decompo- (f) = Od{x(®) () real] )

gition for Real Sig-

437 Parseval’s Relation for Aperiodic Signals
+oo 1 +eo
200 o Y
[ixopar = 5| KGRl
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TABLE 5.1 PROPERTIES OF THE DiSCRETE-TIME FOURIER TRANSFORM
Section  Property Aperiodic Signal Fourier Transform
x[n] X(ef‘")} periodic with
yin] Y(e/)]| period 27
5.3.2 Linearity ax{n] + by[n] aX(e’?) + bY (/)
53.3 Time Shifting xn — no) el x (o)
53.3 Frequency Shifting e/*" x(n] X(e/w-w0)y
534 Conjugation x'[n] X'(e™ ™)
5.3.6 Time Reversal x[—n] X(e )
. . _ [ x[n/k}, if n = multiple of & ™
53.7 Time Expansion Xwlnl = {0’ if n » multiple of k X(e*)
54 Convolution x[n] * y[n] X(e/)y(e™)
5.5 Multiplication x{nlyln] % J X(e®)Y(e")do
2
5.3.5 Differencing in Time x[n] = x[n—1] (1 — e )X (')
. - 1 o
53.5 Accumulation kzw x[k] =% X(e*)
400
+aX(e™) > 8(w — 2mk) ‘
538 Differentiation in Frequency  nx{n] 'd};(:)jw) !
X(e) = X (&™) |
Re{X(e/)} = Re{X(e )}
534 Conjugate Symmetry for x[n] real Im{X(e/*)} = —Im{X(e =)}
Real Slgnals IX(ef‘”)] = IX(e-jw)l
LX(e/*) = —4X (e )
534 Symmetry for Real, Even x[n] real an even X(e’*) real and even
Signals T
534 Symmetry for Real, Odd x[n] real and odd X(e/*) purely imaginary and f
Signals odd
534 Even-odd Decomposition x.[n] = &v{x[n]} [x[n] real] Re{X(e™)} 5
of Real Signals x,[n] = Od{x[n]} [x[n] real] jIm{X(e*)}
539 Parseval’s Relation for Aperiodic Signals

n=—o

400 1 )
S bl = o [P

a duality relationship between the discrete-time Fourier transform and the continuous-time

Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence a; in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-
quence a;, are the values of (1/N)x[—n] (i.e., are proportional to the values of the original




TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal

Fourier Transform

Fourier Series Coefficients (if periodic)

Z akejk(ZHIN)n
k=(N)

+
2ar Z akS(w - 2_;Vr_k)

k= —co

ag

eJoott

ro
> 8w —wg — 27l)

=—w

(a) =N
, k=mmxNmx2N,
0, otherwise
irrational = The signal is aperiodic

coswohn

™ Zm: {8(w — wp — 2ml) + 8(w + wy — 20}

[

- 2w
1
5
0, otherwise

irrational > The signal is aperiodic

k=xmzm=zN tm+2N.

sinwon

4o
% S (8w — wo — 27D — 8(w + wp = 27D}
I —co

2arr

N
s k=rrENrEoN.
—9p k= -norEN-rrap,
0, otherwise
irrational > The signal is aperiodic

x{n] = 1

oo
21 > 8w —2ml)

I=—o

1, k=0 %N £2N,...

0, otherwise

Periodic square wave
1, ]nl =N 1

x[n] =
0, N, <|n =NI2

and
x{n+ N] = x[n]

oo
21 Z apd (w - ?)

= —c

sin{Qak/NYN| + )]
N sin[27k/2N}

2N+ 1
N

, k#0,£N, 22N, .

, k=0,ZN, £2N,...

atuln], o <1

1~ aeJ®

L, la =N

x[n]=
(] 0, |n|> Ny

sinfw(N) + 5)]
sin{w/2)

smH’/n — W sinc (Wn)

ah T T

O<W<m

, 0=<loj=W

0, W<l ==
X(w) periodic with period 27

X(w) =

6[n}

1

uln]

4o
1—:%7“—) + Z 78w — 2mk)
k=—o

8[n — ngl

g“l‘“’"O

(n+ Da'uln], la <1
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TABLE 10.1

Section Property

105.1 Linearity
10.5.2 Time shifting
10.5.3 Scaling in the z-domain
10.5.4 Time reversal
10.5.5 Time expansion
10.5.6 Conjugation
10.5.7 Convolution
10.5.7 First difference
10.5.7 Accumulation
10.5.8 Differentiation

in the z-domain
10.5.9

PROPERTIES OF THE Z-TRANSFORM

Signal

z-Transform

x[n] X(@2)

x1[n} X,(2)

x{n) X(2)

axi[n] + bxanl aX(2) + bX2(2)

x[n — no) 77X (2)

el x[n] X(e ¥02)

zax[n] X A,Iov

ax[n] X(a'2)

x[—n] Xz

xwinl = * Mmg M M HM for some integer 7 X5

x*[n] X"(z)

x[n) = %201 X1(2)X2(2)

xm]— xin— 1 1 - z7HX(@)

< n !

> e XLK] 1= NLNA@

nxfnl -2z &MANNV
Tnitial Value Theorem

If xn] = Oforn < 0, then

%[0 = lim X(z)

ROC

At least the intersection of Ri and R

R, except for the possible addition or
deletion of the origin

R

No%

Scaled version of R (i.e., lalR = the
set of points {alz} for z in R)

Inverted R (i.e., R~ = the set of
points z~!, where z is in R)

RY* (ie., the set of points 7V, where
z1is in R)

R

At least the intersection of Ry and Ry

At least the intersection of R and
|zl >0

At least the intersection of R and
lZ>1

7%
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TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal Transform ROC
1. 8[n] 1 Allz
1

2. uln] T |2t > 1

3. —u[-n—1] ?127—1 |z} < 1

4, 8[n — m] " All z, except
0 (if m>0)or
o (if m < Q)

5. aulr] L 1l > lof

1 —az™!

1

6 —aul=n—1] = le] <l
n g aZ7l
7. nauln) m 2| > ||
-1
az
C—no"ul—-n — - <
8. —na"u[-n—-1] 0 a1y 2] < al
1 = [coswg]z™!
9. [cos wonluln] [~ Feosale | 727 |z} > 1
. [sinwplz™'

. >
10. [sinwon]u{n] T Deosmolz T+ 22 2] >1
11. [r" cos wonluln] L= [reos wole”! lz| > r

' 0 1 - [2rcoswyjz! + 12772 z

: -1
12. [r" sin won]uln] [rsinwolz |zl > r

1= [2rcoswglz! + r2z2

10.7.1 Causality

A causal LTI system has an impulse response k[n] that is zero for n < 0, and théref()m
right-sided. From Property 4 in Section 10.2 we then know that the ROC of H(z) is
exterior of a circle in the z-plane. For some systems, e.g., if h[n] = 8[n], so thatH Z
the ROC can extend all the way in to and possibly include the origin. Also, in gen
a right-sided impulse response, the ROC may or may not include infinity. For ex
if hfn] = 8[n + 1], then H(z) = z, which has a pole at infinity. However, as
Property 8 in Section 10.2, for a causal system the power series

H(z) = Z hin)z™"

does not include any positive powers of z. Consequently, the ROC lncludes mﬁ
marizing, we have the follow principle:

A discrete-time LTI system is causal if and only if the ROC of its syster
the exterior of a circle, including infinity.
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