Midterm #3 of ECE301, Section 1 and Section 2
6:30-7:30pm, Wednesday, November 12, 2014.

1. Please make sure that it is your name printed on the exam booklet. Enter your
student ID number, and signature in the space provided on this page, NOW!

2. This is a closed book exam.

3. This exam contains multiple choice questions and work-out questions. For multiple
choice questions, there is no need to justify your answers. You have one hour to
complete it. The students are suggested not spending too much time on a single
question, and working on those that you know how to solve.

4. Use the back of each page for rough work.

5. Neither calculators nor help sheets are allowed.
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Question 1: [28%, Work-out question, Learning Objectives 2, 3, 4, 5]
Consider an input signal x(¢) and an LTI system with impulse response h(t). The
expressions of x(t) and h(t) are:

w(t)= > o(t—k)

k=—o00

—i2mt i 1 <t<1
=90 o ST
0 otherwise

1. [10%] Find the frequency response H (jw) of the LTI system and plot it for the range
of —4n < w < A4r.

2. [8%] Find the Fourier transform X (jw) of the input x(t) and plot it for the range
of —4r < w < A4r.

3. [10%] Let y(t) denote the output of the LTI system when the input is z(¢). Do (i)
find the expression of y(t); and (ii) plot Y (jw) for the range of —4r < w < 47,
Hint: If you do not know the answers to the first two subquestions, you can assume

y(t) = (cos(mt+ 1) +sin(27t) +3) * (U(t+1) —U(t — 1)) and use this y(t) to answer
tasks (i) and (ii). You will get 10 points if your answers are correct.






Question 2: [22%, Work-out question, Learning Objectives 4, 5] Consider a periodic dis-
crete time signal x[n], of which the period is 50. Suppose we also know that the Discrete-
Time Fourier Series Coefficients x[n] is

1 if1 <k<19
ar =4 —1 if31 <k <49
0 itk=0o0r20<k<30
1. [7%] What is value of S°1% x[n]?
2. [7%] What is the value of z[—25]?

3. [8%] What is the average power of the signal z[n]?






Question 3: [12%, Work-out question, Learning Objectives 4, 5]
Consider a discrete-time signal:

x[n] =

cos(n) if =10 <n <10
0 otherwise

1. [10%)] Find the Discrete-Time Fourier Transform X (e/*) of x[n].
2. [2%)] Ts your X (e?*) periodic?

Hint: You may need to use the formula Zszl arkb1 = a(%:}() if r # 1.






Question 4: [15%, Work-out question, Learning Objectives 3, 4, 5] Consider the following
signal
sin(t) cos(4t) sin(2t)

—p : (1)

x(t) =

Plot the Continuous-Time Fourier transform X (jw) for the range of —8 < w < 8.
Hint: If you do not know the answer, you should write down as much as you know so

that partial credit can be given.






Question 5: [23%, Work-out question, Learning Objective 3, 4, 5]

An AM radio station A would like to send an input signal z;(t) over a sine carrier of
frequency 920k Hz. More specifically, we denote the input signal as x;(t) and use y(¢) to
denote the AM modulated signal, which will be sent out by the transmitter.

1. [2%] What is the value of the carrier frequency with the unit being (rad/sec)?

2. [2%] Write down the input/output relationship (equation) between z(t) and y(t).
Hint: Please pay attention to the requirement that the transmitter is using a sine
signal as the carrier, not a cosine signal.

A nearby AM radio station B would like to send another signal x5(t) over a sine carrier
but this time the carrier frequency is 930k Hz. It turns out that when both stations A and
B are transmitting simultaneously, their signals are “interfering heavily with each other”.
It turns out that the reason is that both radio stations A and B forgot to low-pass filter
their signals x1(f) and xo(t) before their transmission.

3. [6%)] Explain why “not low-pass filtering it before transmission” can cause problems
when both radio stations transmit simultaneously. (A very quick sentence or two
will suffice).

To avoid interference, it is critical that we low-pass filter the base-band signals z; ()
and x4 (t) before transmitting at carrier frequencies 920k and 930k Hz, respectively.

4. [8%] What is the (largest) cutoff frequency of the low-pass filter one should use to
avoid the interference between radio stations A and B? Please make sure your unit
is correct.

5. [6%] The receiver 1 uses synchronous demodulation to listen to radio station A. Let
w(t) denote the resulting signal after demodulation. Write down the relationship
between y(t) and w(t).

Hint: Your answer should consist of statements like “multiplying .....” and/or “using
a filter.....” Please be specific about the parameters of the filters. If you prefer, you
can also use a block diagram (flow chart) to describe your demodulation system
instead of using sentences.






Discrete-time Fourier series

x[n] _ Z akejk(Qﬂ/N)n
k—(N)

1 .
ap = — Z x[n]efjk(Zﬂ/N)n

N
n=(N)
Continuous-time Fourier series
oo
ZE(t) _ Z akejk(QTr/T)t
k=—00

1 )
ag = —/m(t)efk@”/T)tdt
T Jr

Continuous-time Fourier transform
1 > . jwt
z(t) = — X(jw)e’ dw
2 J_ o

X(jw) = /00 x(t)e ¥t dt

oo
Discrete-time Fourier transform

1

x[n] = o, X (jw)e* dw
X(e*) = Z x[n]ewn

Laplace transform
x(t) = ie"t /00 X (0o + jw)e’ dw
2 oo
X(s) = / x(t)e *dt

7 transform

(10)

(11)

(12)



Fourier Series Representation of

Periodic Signals Chap, 3

206
TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES
S ———
Property Section Periodic Signal Fourier Series Coefficients
x(f)) Periodic with period T and ay
¥(t) fundamental frequency wo = 2T by
Linearity 351 Ax(®) + By(®) Aa; + Bb;
Time Shifting 352 x(t — to) ape ol = age ey
Frequency Shifting eiMant x(1) = /M (27/T) x(2) Q-
Conjugation 356 x*(t) ay
Time Reversal 3.5.3 x(—1t) a-
Time Scaling 3.54 x(at), >0 (periodic with period T/a) ax
Periodic Convolution J x(T)y(t — Td7 Taxby
T
4o
Multiplication 3.5.5 x(0)y® Z aiby-
J= -
. e dx(t . 2
Differentiation d(t) koot = JkTW a
t it 1\ d .
Integration J x(H) dt(ﬁr{1 © .va ved fm _l_ ar = _l___
o periodic only if a0 = 0) Jkawo jkQ2mIT)
ap = aik
Refar} = Relai}
Conjugate Symmetry for 356 x(¢) real Imiar} = —dmia_y)
Real Signals laxl = lai ~
Yay = —Xa-
Real and Even Signals 35.6 x(t) real and even ay real and even ;
Real and Odd Signals 35.6 x(7) real and odd ay, purely imaginary
Even-Odd Decomposition {xe(t) = &v{x(n)} [x(r) real] Refayt
of Real Signals x,(1) = Od{x(0} [x(p) real] jImiat
Pparseval’s Relation for Periodic Signals
1 I
3| opar = >l
three examples, we illustrate this. The last example in this section then demons
d to characterize the signal in great detail.

propetties of a signal can be use

Example 3.6

Consider the signal g(z) with a fundamental period of

. could determine the Fourier s
tion (3.39). Instead,
wave x(f) in Example
T[ = 1,

3.5. Referring to that example,

g®) = x(t -1~ 1/2.

eries representation of g(2) direct! :
we will use the relationship of g(r) to the symumetric P&

4, shown in Figure
1y from the ana

we see that, with




Sec. 3.7 Properties of Discrete-Time Fourier Series 221

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(¢),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property

Periodic Signal

Fourier Series Coefficients

Time Shifting
‘Frequency Shifting
Conjugation

Time Reversal

Time Scaling

eriodic Convolution

x[n] } Periodic with period N and
y[n] | fundamental frequency wo = 27/N

Ax[n] + By[n]

x[n = ny]
ejM(Z-n'/N)nx[n]

x"[n]
x[~n]
x[n/m], if n is a multiple of m
x(m) [n] = . . .
0, if n is not a multiple of m
(periodic with period mN)

> xlrlyln—r]

r=(N)

x[n]yln]

x[n] = x[n - 1]

Z x[K] (ﬁmte valued and periodic only)
e ifay =0

x[n] real

x[n] real and even
x[n] real and odd

{ xe[n] = &v{x[n])} [x[n] real]
x,[n] = Od{x[n]} [x[n]real]

Parseval’s Relation for Periodic Signals

¥ S P = S faf

n=(N) k=(N)

ay ] Periodic with
period N

a e~ ik@miNm
af- M
A
a—i

1  (viewed as periodic
m (with period mN )

Nakb,;

Z aibe;

1=(N)
(1 —- e—jk(ZvrIN))ak

1
((1 — e~ JkETIN)y )a"
ay = aik
Refa,} = Refa_y}
Imlay} = —Imla_}
la] = la-|
Lay = —Ya_;
ay, real and even
a, purely imaginary and odd
Gefa,}
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4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consi
ered some of the important properties of the Fourier transform. These are summarized
Table 4.1, in which we have also indicated the section of this chapter in which each pro
erty has been discussed. ~~

In Table 4.2, we have assembled a list of many of the basic and important Four
transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section Property Aperiodic signal Fourier transform k
x() X(jw)
¥ Y(jw)
43.1 Linearity ax(®) + by(® aX(jw) + b¥( jo)
432 Time Shifting x(t — 1) e i X(jw)
43.6 Frequency Shifting el x(t) X(jl@ — wo))
433 Conjugation x'(®) X (—jw)
43.5 Time Reversal x(—1) X(—jw)
435 Time and Frequency x(at) —1— (B—)
. la"\ a
Scaling
4.4 Convolution x(8) * y(t) X( jwﬂjq))’
45 Multiplication Xy 2—‘1—,[“&0 B)Y(j(w — O)d6
434 Differentiation in Time g;x(t) joX(jo)
t
434 Integration J x(r)dt J—,l(;X( jw) + 7X(0)86(w)
43.6 Differentiation in tx(t) j d—d—X (jow)
Frequency @
X(jw) = X"(~jo)
Re{X(jw)} = RelX(
433 Conjugate Symmetry x(t) real ImiX(jw)} = ~ 9
for Real Signals lX(jw)l _ lX(—jw)l ‘
LX(jw) = — X
433 Symmetry for Realand  x(f) real and even X(jw) real and even
Even Signals .
433 Symmetry for Realand  x(?) real and odd X(jw) purely imagipary
Odd Signals

%) = Svix(®}  [x() reall Re{X(jw)}

433 Even-Odd Decompo- (f) = Od{x(®) () real] )

gition for Real Sig-

437 Parseval’s Relation for Aperiodic Signals
+oo 1 +eo
200 o Y
[ixopar = 5| KGRl
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y We thVe COHSiCL

Fourier series coefficients

T€ summarizeg in Signal Fourier transform (if periodic)
Whlch eaCh T b o
prop. Z ageltn 27 Z ad(w — kwg) a,
. F= o P
tmportant Fourje,
1pPly the tools of gJwut 2m8(w — wy) a; = 1
a; = 0, otherwise
P 8(w ~ wo) + B(w + 1= =y
“transform coswot (o(@ ~ o) (@ +wo)l a, = 0, otherwise
h\
!
i m a = —a., = 5
t —[6(w — wg) — §(w + 2
Sinwy j[ (w — wp) (@ + wp)] a = 0, otherwise
;.)_ ........ a=1 a=0 k=0
@ x(n =1 27 6(w) this is the Fourier series representation for
any choice of T > 0
Periodic square wave ]
p=|b M=<D &= 2 sin kwoT T kooTi\ _ sin kwoT ‘
W0 <=1 S 2T g g,y @l sinc( 20 '): it LL
“— k T T km
and k=-e
x(t+T) = x(2)
)y —@)de
it 2m <5 27k 1
"Zwa(: - nT) 7,;“,8(‘0 - —T—) & = = forall k
(0)d(w) 1, <, 2sinwT),
x(®) e —
0, l>T, )

. sin Wt . L |of<w :
@) e X(jo) = [O :w: >W - :
Re{X (- jow)} » \
—Im{X(— jw)} 80 1 _

- jo)| '
X(—jw) u(®) - b jiw + 7 8(w) —
ven
\ginary and odd 8(t ~ o) e -
1
—at p—
e “u(t), Re{a} > 0 it e
te % u(t), Refa} > 0 —1— — t
’ (a+ jw) "
o _“<,l:1l)y e~ u(t), _1__ .
Refa} > 0 (a+ jo)
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rete-time Fo
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Sec.5.7  Duality 3an
TABLE 5.1 PROPERTIES OF THE DiSCRETE-TIME FOURIER TRANSFORM
Section  Property Aperiodic Signal Fourier Transform
x[n] X(ef‘")} periodic with
yin] Y(e/)]| period 27
5.3.2 Linearity ax{n] + by[n] aX(e’?) + bY (/)
53.3 Time Shifting xn — no) el x (o)
53.3 Frequency Shifting e/*" x(n] X(e/w-w0)y
534 Conjugation x'[n] X'(e™ ™)
5.3.6 Time Reversal x[—n] X(e )
. . _ [ x[n/k}, if n = multiple of & ™
53.7 Time Expansion Xwlnl = {0’ if n » multiple of k X(e*)
54 Convolution x[n] * y[n] X(e/)y(e™)
5.5 Multiplication x{nlyln] % J X(e®)Y(e")do
2
5.3.5 Differencing in Time x[n] = x[n—1] (1 — e )X (')
. - 1 o
53.5 Accumulation kzw x[k] =% X(e*)
400
+aX(e™) > 8(w — 2mk) ‘
538 Differentiation in Frequency  nx{n] 'd};(:)jw) !
X(e) = X (&™) |
Re{X(e/)} = Re{X(e )}
534 Conjugate Symmetry for x[n] real Im{X(e/*)} = —Im{X(e =)}
Real Slgnals IX(ef‘”)] = IX(e-jw)l
LX(e/*) = —4X (e )
534 Symmetry for Real, Even x[n] real an even X(e’*) real and even
Signals T
534 Symmetry for Real, Odd x[n] real and odd X(e/*) purely imaginary and f
Signals odd
534 Even-odd Decomposition x.[n] = &v{x[n]} [x[n] real] Re{X(e™)} 5
of Real Signals x,[n] = Od{x[n]} [x[n] real] jIm{X(e*)}
539 Parseval’s Relation for Aperiodic Signals

n=—o

400 1 )
S bl = o [P

a duality relationship between the discrete-time Fourier transform and the continuous-time

Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence a; in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-
quence a;, are the values of (1/N)x[—n] (i.e., are proportional to the values of the original




TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal

Fourier Transform

Fourier Series Coefficients (if periodic)

Z akejk(ZHIN)n
k=(N)

+
2ar Z akS(w - 2_;Vr_k)

k= —co

ag

eJoott

ro
> 8w —wg — 27l)

=—w

(a) =N
, k=mmxNmx2N,
0, otherwise
irrational = The signal is aperiodic

coswohn

™ Zm: {8(w — wp — 2ml) + 8(w + wy — 20}

[

- 2w
1
5
0, otherwise

irrational > The signal is aperiodic

k=xmzm=zN tm+2N.

sinwon

4o
% S (8w — wo — 27D — 8(w + wp = 27D}
I —co

2arr

N
s k=rrENrEoN.
—9p k= -norEN-rrap,
0, otherwise
irrational > The signal is aperiodic

x{n] = 1

oo
21 > 8w —2ml)

I=—o

1, k=0 %N £2N,...

0, otherwise

Periodic square wave
1, ]nl =N 1

x[n] =
0, N, <|n =NI2

and
x{n+ N] = x[n]

oo
21 Z apd (w - ?)

= —c

sin{Qak/NYN| + )]
N sin[27k/2N}

2N+ 1
N

, k#0,£N, 22N, .

, k=0,ZN, £2N,...

atuln], o <1

1~ aeJ®

L, la =N

x[n]=
(] 0, |n|> Ny

sinfw(N) + 5)]
sin{w/2)

smH’/n — W sinc (Wn)

ah T T

O<W<m

, 0=<loj=W

0, W<l ==
X(w) periodic with period 27

X(w) =

6[n}

1

uln]

4o
1—:%7“—) + Z 78w — 2mk)
k=—o

8[n — ngl

g“l‘“’"O

(n+ Da'uln], la <1

-
(I — ae~jo)?

(n+r—1!

20— D! laf <1

atuln),

i
(1 — ae—Jo)y
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