Midterm \#3 of ECE301, Prof. Wang's section
6:30-7:30pm Tuesday, April 05, 2012, FRNY G140,

1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature in the space provided on this page, NOW!
2. This is a closed book exam.
3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
4. Use the back of each page for rough work.
5. Neither calculators nor help sheets are allowed.

> Name:

Student ID:

E-mail:
Signature:

Question 1: [20\%, Work-out question, Outcome 4] Consider a discrete-time periodic signal $x[n]$, which is periodic with period 40 and

$$
x[n]= \begin{cases}1 & \text { if } 1 \leq n \leq 10 \tag{1}\\ 0 & \text { if } 11 \leq n \leq 30 \\ 2 & \text { if } 31 \leq n \leq 40\end{cases}
$$

We use $a_{0}, a_{1}, \cdots, a_{39}$ to denote the discrete-time Fourier series coefficients of $x[n]$

1. [4\%] What is the value of a_{0} ?
2. [4\%] What is the value of a_{20} ?
3. [4\%] What is the value of $a_{0}+a_{1}+a_{2}+a_{3}+\cdots+a_{39}$?
4. [4\%] What is the value of $\left(a_{0}\right)^{2}+\left(a_{1}\right)^{2}+\left(a_{2}\right)^{2}+\cdots+\left(a_{39}\right)^{2}$?
5. [4\%] What is the value of $a_{0}-a_{1}+a_{2}-a_{3}+\cdots-a_{39}$?

Question 2: $[10 \%$, Work-out question, Outcomes 2, 4, and 5] The input and the output of a stable and causal LTI system are described by the following differential equation:

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+7 \frac{d y(t)}{d t}+10 y(t)=2 x(t) \tag{2}
\end{equation*}
$$

1. [10\%] Find the impulse response $h(t)$ of this system.

Question 3: [20\%, Work-out question, Outcomes 3, 4, and 5] Consider an LTI system with impulse response $h(t)=\frac{\sin (3 t) \sin (6 t)}{t^{2}}$. Answer the following questions.

1. [10\%] Plot the frequency response $H(j \omega)$ for the range of $-10 \leq \omega \leq 10$?
2. $[10 \%]$ Find out the output $y(t)$ when the input is $x(t)=\cos (9 t)+\sin (6 t+\pi)+e^{j 3 t}+2$. Hint: If you do not know the answer to the previous subquestion, you can assume that

$$
H(j \omega)=\left\{\begin{array}{ll}
\omega+9 & \text { if }-9<\omega<0 \tag{3}\\
9-\omega & \text { if } 0<\omega<9 \\
0 & \text { otherwise }
\end{array} .\right.
$$

You will get 9 points if your answer is correct.

Question 4: [20\%, Work-out question, Outcomes 4 and 6] Consider a discrete-time period signal $x[n]$ as follows

$$
x[n]= \begin{cases}\sin \left(\frac{\pi n}{2}\right) & \text { if }-2 \leq n \leq 2 \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

1. [5\%] Plot $x[n]$ for the range of $-5 \leq n \leq 5$.
2. [9\%] Compute its discrete-time Fourier transform (DTFT) $X\left(e^{j \omega}\right)$.
3. [6\%] Is $X\left(e^{j \omega}\right)$ periodic? Plot $X\left(e^{j \omega}\right)$ for the range of $-2 \pi \leq \omega \leq 2 \pi$.

Question 5: [30\%, Work-out question, Outcomes 3, 4, and 5] Consider an AM system, which sends the input signal $x(t)$ over a cosine carrier of frequency 1 Hz .

More specifically, we denote the input signal as $x(t)$ and use $y(t)$ to denote the AM modulated signal, which will be sent out by the AM transmitter.

1. [5\%] What is the value of the carrier frequency ω_{c} with the unit being ($\mathrm{rad} / \mathrm{sec}$)? Write down the input/output relationship (equation) between $x(t)$ and $y(t)$.
2. [5\%] The receiver uses synchronous demodulation. Let $w(t)$ denote the resulting signal after demodulation. Write down the relationship between $y(t)$ and $w(t)$. Your answer should consist of statements like "multiplying" and/or "using a filter....." Please be specific about the parameters of the filters. If you prefer, you can also use a block diagram (flow chart) to describe your demodulation system instead of using sentences.
3. $[10 \%]$ Suppose we also know that $x(t)=\frac{\sin (3 \pi t)}{\pi t}$, plot the Fourier transforms $X(j \omega)$ and $Y(j \omega)$.
4. [5\%] Answer the question: "Can the receiver demodulate the original signal $x(t)$ from the received signal $y(t)$?" Write down your reasons in one or two short sentences.
5. [5\%] Suppose that we are allowed to increase the carrier frequency to $f_{\text {carrier }} \mathrm{Hz}$. What is the minimum value of $f_{\text {carrier }}$ for which the receiver can successfully demodulate $x(t)$ (as defined in sub-question 3) from $y(t)$?

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X(j \omega) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10 . could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{j M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=\{N\rangle} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Running Sum Conjugate Symmetry for Real Signals	$\sum_{k=-\infty}^{n} x[k]\binom{\text { finite valued and periodic only }}{\text { if } a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}_{\ell}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=0 d\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
	Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$	

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Parseval's Relation for Aperiodic Signals

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|X(j \omega)|^{2} d \omega
$$

FORM PAIRS

, we have consid. re summarized in which each prop. important Fourier upply the tools of
transform
; ω)
, $-\theta) d \theta$
$\cdot(0) \delta(\omega)$

$-j \omega)$

$\mathcal{P}_{\mathcal{e}}\{X(-j \omega)\}$
$-\mathscr{S}_{n}\{X(-j \omega)\}$
$-j \omega) \mid$
$\lceil X(-j \omega)$
ven
tginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0 j} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0}{ }^{\prime}}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$\begin{aligned} & a_{1}=1 \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=a_{-1}=\frac{1}{2} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\sin \omega_{0} t$	$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=-a_{-1}=\frac{1}{2 j} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$x(t)=1$	$2 \pi \delta(\omega)$	$a_{0}=1, \quad a_{k}=0, k \neq 0$ (this is the Fourier series representation for)
Periodic square wave $x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & T_{1}<\|t\| \leq \frac{T}{2}\end{cases}$ and $x(t+T)=x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right)$	$\frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)$	$a_{k}=\frac{1}{T}$ for all k
$x(t) \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \omega T_{1}}{\omega}$	-
$\frac{\sin W t}{\pi t}$	$X(j \omega)= \begin{cases}1, & \|\omega\|<W \\ 0, & \|\omega\|>W\end{cases}$	-
$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$e^{-a t} u(t), \mathcal{R} e\{a\}>0$	$\frac{1}{a+j \omega}$	-
$t e^{-a t} u(t), \mathcal{R e}\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\begin{aligned} & \frac{n^{n-1}}{(n-1)!} e^{-a t} u(t), \\ & \mathfrak{Q}\{a\}>0 \end{aligned}$	$\frac{1}{(a+j \omega)^{n}}$	-

table 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		$x[n]$	$X\left(e^{j \omega}\right)$ periodic with
		$y[n]$	$\left.Y\left(e^{j \omega}\right)\right\}$ period 2π
5.3.2	Linearity	$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$
5.3.3	Time Shifting	$x\left[n-n_{0}\right]$	$e^{-j \omega n_{0}} X\left(e^{j \omega}\right)$
5.3.3	Frequency Shifting	$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$
5.3.4	Conjugation	$x^{*}[n]$	$X^{*}\left(e^{-j \omega}\right)$
5.3.6	Time Reversal	$x[-n]$	$X\left(e^{-j \omega}\right)$
5.3.7	Time Expansion	$x_{(k)}[n]= \begin{cases}x[n / k], & \text { if } n=\text { multiple of } k \\ 0, & \text { if } n \neq \text { multiple of } k\end{cases}$	$X\left(e^{j k \omega}\right)$
5.4	Convolution	$x[n] * y[n]$	$X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)$
5.5	Multiplication	$x[n] y[n]$	$\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$
5.3.5	Differencing in Time	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) X\left(e^{j \omega}\right)$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j \omega}} X\left(e^{j \omega}\right)$
5.3.8	Differentiation in Frequency	$n \times[n]$	$\begin{aligned} & +\pi X\left(e^{j 0}\right) \sum_{k=-\infty}^{+\infty} \delta(\omega-2 \pi k) \\ & j \frac{d X\left(e^{j \omega}\right)}{d \omega} \end{aligned}$
5.3.4	Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right) \\ \operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}=\mathcal{R e}^{-j}\left\{X\left(e^{-j \omega}\right)\right\} \\ \mathscr{I}_{n z\{ }\left\{X\left(e^{j \omega}\right)\right\}=-\mathcal{I}_{m}\left\{X\left(e^{-j \omega}\right)\right\} \\ \left\|X\left(e^{j \omega}\right)\right\|=\left\|X\left(e^{-j \omega}\right)\right\| \\ \Varangle X\left(e^{j \omega}\right)=-\Varangle X\left(e^{-j \omega}\right) \end{array}\right.$
5.3.4	Symmetry for Real, Even Signals	$x[n]$ real an even	$X\left(e^{j \omega}\right)$ real and even .
5.3.4	Symmetry for Real, Odd Signals	$x[n]$ real and odd	$X\left(e^{j \omega}\right)$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$\begin{array}{ll} x_{e}[n]=\mathcal{E v}\{x[n]\} & {[x[n] \text { real }]} \\ x_{o}[n]=\operatorname{dd}\{x[n]\} & {[x[n] \text { real }]} \end{array}$	
5.3.9	Parseval's Re $\sum_{n=-\infty}^{+\infty}\|x[n]\|$	ation for Aperiodic Signals $=\frac{1}{2 \pi} \int_{2 \pi}\left\|X\left(e^{j \omega}\right)\right\|^{2} d \omega$	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_{k} of a periodic signal $x[n]$ are themselves a periodic sequence, we can expand the sequence a_{k} in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_{k} are the values of $(1 / N) x[-n]$ (i.e., are proportional to the values of the original

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_{k} e^{j k(2 n / N) n}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	a_{k}
$e^{j \omega_{0} n}$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta\left(\omega-\omega_{0}-2 \pi l\right)$	(a) $\begin{aligned} & \omega_{0}=\frac{2 \pi m}{N} \\ & a_{k}= \begin{cases}1, & k=m, m \pm N, m \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_{0} n$	$\pi \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)+\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} \omega_{0} & =\frac{2 \pi m}{N} \\ a_{k} & = \begin{cases}\frac{1}{2}, & k= \pm m, \pm m \pm N, \pm m \pm 2 N \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_{0} n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)-\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} & \omega_{0}\end{aligned} \quad=\frac{2 \pi r}{N} \quad \begin{aligned} \frac{1}{2 j}, & k=r, r \pm N, r \pm 2 N, \ldots,\end{aligned}, \begin{aligned}-\frac{1}{2 j}, & k=-r ;-r \pm N,-r \pm 2 N \\ 0, & \text { otherwise }\end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$x[n]=1$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta(\omega-2 \pi l)$	$a_{k}= \begin{cases}1, & k=0, \pm N, \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases}$
Periodic square wave $x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & N_{1}<\|n\| \leq N / 2\end{cases}$ and $x[n+N]=x[n]$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$\begin{aligned} & a_{k}=\frac{\sin \left[(2 \pi k / N)\left(N_{1}+\frac{1}{2}\right)\right]}{N \sin [2 \pi k / 2 N]}, k \neq 0, \pm N, \pm 2 N, \\ & a_{k}=\frac{2 N_{1}+1}{N}, k=0, \pm N, \pm 2 N, \ldots \end{aligned}$
$\sum_{k=-\infty}^{+\infty} \delta[n-k N]$	$\frac{2 \pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$a_{k}=\frac{1}{N}$ for all k
$a^{n} u[n], \quad\|a\|<1$	$\frac{1}{1-a e^{-j \omega}}$	-
$x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & \|n\|>N_{1}\end{cases}$	$\frac{\sin \left[\omega\left(N_{1}+\frac{1}{2}\right)\right]}{\sin (\omega / 2)}$	-
$\begin{aligned} & \frac{\sin W n}{\pi n}=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right) \\ & 0<W<\pi \end{aligned}$	$\begin{aligned} & X(\omega)= \begin{cases}1, & 0 \leq\|\omega\| \leq W \\ 0, & W<\|\omega\| \leq \pi\end{cases} \\ & X(\omega) \text { periodic with period } 2 \pi \end{aligned}$	-
$\delta[n]$	1	-
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{+\infty} \pi \delta(\omega-2 \pi k)$	$-$
$\delta\left[n-n_{0}\right]$	$e^{-j \omega \mu_{0}}$	
$(n+1) a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$	
$\frac{(n+r-1)!}{n!(r-1)!} a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{r}}$	

