Final Exam of ECE301, Prof. Wang's section

3:20-5:20pm Wednesday, May 03, 2012, CL50 224.

1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature in the space provided on this page, NOW!
2. This is a closed book exam.
3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have two hours to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
4. Use the back of each page for rough work.
5. Neither calculators nor help sheets are allowed.

Name:
Student ID:

E-mail:

Signature:

Question 1: [14\%, Work-out question]

1. [1\%] What does the acronym "AM-SSB" stands for?

Prof. Wang wanted to transmit an AM-SSB upper-side-band signal. To that end, he wrote the following MATLAB code.

```
% Initialialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read two different .wav files
[x1, f_sample, N]=wavread('x1');
x1=x1';
[x2, f_sample, N]=wavread('x2');
x2=x2';
% Step 0: Initialize several parameters
W_1=????;
W_2=????;
W_3=????;
W_4=????;
W_5=????;
```

\% Step 1: Make the signals band-limited.
$\mathrm{h}=1 /(\mathrm{pi} * \mathrm{t}) . *\left(\sin \left(\mathrm{~W} _1 * \mathrm{t}\right)\right)$;
x1_new=ece301conv(x1, h);
x2_new=ece301conv(x2, h);
\% Step 2: Multiply x_new with a cosine wave.
x1_h=x1_new. $* \cos \left(W _2 * t\right)$;
x2_h=x2_new. $* \cos \left(W _3 * t\right)$;
h1=1/(pi*t).*(sin(W_4*t));
h2=1/(pi*t).*(sin(W_5*t));
\% Step 3: Keep one of the side bands
x1_sb=x1_h-ece301conv(x1_h, h1);
x2_sb=x2_h-ece301conv(x2_h, h2);
\% Step 4: Create the transmitted signal
$y=x 1 _s b+x 2 _s b ;$
wavwrite(y', f_sample, N, 'y.wav');
2. [7.5\%] Suppose we also know that Prof. Wang intended to use frequency bands $3 \mathrm{~K}-$ 5 K Hz and $5.5 \mathrm{~K}-7.5 \mathrm{~K} \mathrm{~Hz}$ for transmitting x 1 and x 2 , respectively. What should the values of W_1 to W_5 be in the MATLAB code?

Knowing that Prof. Wang used the above code to generate the "y.wav" file, a student tried to demodulate the output waveform "y.wav" by the following code.

```
% Initialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read the .wav files
[y, f_sample, N]=wavread('y');
y=y';
% Initialize several parameters
W_6=????;
W_7=????;
W_8=????;
% Create the low-pass filter.
h_M=1/(pi*t).*(sin(W_6*t));
% demodulate signal 1
y1=2*y.*cos(W_7*t);
x1_hat=ece301conv(y1,h_M);
sound(x1_hat,f_sample)
% demodulate signal 2
y2=2*y.*\operatorname{cos(W_8*t);}
x2_hat=ece301conv(y2,h_M);
sound(x2_hat,f_sample)
```

3. [4.5\%] Continue from the previous question. What should the values of W_6 to W_8 in the MATLAB code?

Hint: If you do not know the answers to Q1.2 and Q1.3, please simply draw the AMSSB modulation and demodulation diagrams and mark carefully all the parameter values. You will receive 9 points for Q1.2 and Q1.3.
4. [1\%] Does the demodulated signal "x2_hat" sound the same as the original signal "x2_new"?

Question 2: $[13 \%$, Work-out question] For a given signal $x[n]$, we know that the expression of its Z-transform is $X(z)=\frac{1}{\left(1-(1+j) z^{-1}\right)\left(2+z^{-1}\right)}$. Answer the following questions:

1. [2\%] Draw the pole-zero plot.
2. [2\%] If we also know that the DTFT of $x[n]$ exists, what is the ROC of the Ztransform of $x[n]$.
3. [2\%] Find the expression of $x[n]$. Hint: The partial fraction expression of $X(z)$ is $X(z)=\frac{\frac{1+j}{3+2 j}}{1-(1+j) z^{-1}}+\frac{\frac{1}{3+2 j}}{2+z^{-1}}$.

Consider two signals $w[n]=3^{n} \mathcal{U}[-n+1]$ and $h[n]=0.2^{n} \mathcal{U}[n]$. Answer the following questions:
4. [3\%] Find the Z-transform of $w[n]$.
5. [4\%] We know $y[n]=w[n] * h[n]$. Find the Z-transform of $y[n]$.

Question 3: [15\%, Work-out question]

1. [1.5\%] Consider a signal $x(t)=\cos (2 \pi t)$. Plot $x(t)$ for the range of $-2 \leq t \leq 2$.
2. [1.5\%] Plot $X(j \omega)$ for the range of $-6 \pi \leq \omega \leq 6 \pi$.
3. [4\%] We pass $x(t)$ through an impulse train sampling system with sampling period $T=\frac{2}{3} \mathrm{sec}$. That is $x_{p}(t)=x(t) p(t)$ where $p(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-\frac{2 k}{3}\right)$. Plot $x_{p}(t)$ for the range of $-2 \leq t \leq 2$.
4. [5\%] Plot $X_{p}(j \omega)$ for the range of $-6 \pi \leq \omega \leq 6 \pi$.
5. [3\%] For reconstruction, we pass $x_{p}(t)$ through a low-pass filter with cutoff frequency $W=\frac{\omega_{s}}{2}$, where ω_{s} is the sampling frequency. We then multiply it by T. That is, the overall reconstructed signal is $\hat{x}(t)=T \cdot\left(x_{p}(t) * h_{\mathrm{LPF}, \omega_{s} / 2}(t)\right)$.
What is the expression of the reconstructed signal $\hat{x}(t)$.

Question 4: [11\%, Work-out question] Consider a continuous time signal $x(t)=\sin (2 \pi$. $2000 \cdot t$) and we use a digital voice recorder to convert the continuous time signal $x(t)$ to its discrete time counter part $x[n]$ with sampling frequency 44.1 K Hz . The array $x[n]$ is stored as a .wav file.

We can now do some discrete-time signal processing $y[n]=x[n] * h[n]$ where $h[n]$ is the impulse response of the discrete-time signal processing and then play the "processed signal" by the MATLAB command.
sound ($\mathrm{y}, 44100$) ;
which converts the discrete-time signal $y[n]$ to its continuous time counterpart $y(t)$.
Answer the following question.

1. $[2 \%]$ Suppose that we do not do any processing, i.e., $y[n]=x[n]$. Answer the following question: Is the reconstructed output $y(t)$ the same as the original signal $x(t)$? Please use one to two sentences to explain your answer.
2. [3\%] Continue from the above question. Suppose when Prof. Wang tried to use the MATLAB command, he made a mistake and entered the following wrong command
sound (y, 22050) ;
How does $y(t)$ sound when compared to the original signal $x(t)$? Please first use one sentence to describe how $y(t)$ sounds, and then write down the expression of $y(t)$.
3. [3\%] Suppose Prof. Wang decided to do some discrete-time signal processing and chose $h[n]=\delta[n-22050]$. Furthermore, this time he used the right command
sound ($\mathrm{y}, 44100$) ;
How does $y(t)$ look like when compared to the original signal $x(t)$? Please first use one sentence to describe the effect of the signal processing " $h[n]=\delta[n-22050]$ " on $y(t)$, and then write down the expression of $y(t)$.
4. [Advanced 3\%] Prof. Wang found an old MP3 player which can only play files of the sampling frequency 22.05 KHz but he knew that the $y[n]$ was sampled at the frequency 44.1 K Hz . How could he generate another file $y^{\prime}[n]$ from his original file $y[n]$ such that the new file $y^{\prime}[n]$ can be properly played in the old MP3 player. (That is, when playing the new file $y^{\prime}[n]$ in the old MP3 player, which can only support 22.05 K Hz , it sounds exactly the same as when playing the old file $y[n]$ by the MATLAB command.)
sound ($\mathrm{y}, 44100$) ;
Please use 1 to 3 sentences to describe how you would generate the new file $y^{\prime}[n]$ from the old file $y[n]$.

Question 5: [12\%, Work-out question] Consider a continuous-time linear time invariant system satisfying $y(t)=0.5 \frac{d}{d t} y(t)+x(t-0.5)+x(t+0.5)$. Find the output $y(t)$ when the input is $x(t)=e^{-j \pi t}+\cos (2 t)$.

Question 6: [10\%, Work-out question] Consider two discrete-time signals

$$
\begin{equation*}
w[n]=\frac{\sin \left(\frac{\pi \cdot n}{4}\right)}{\pi \cdot n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
h[n]=\frac{\sin \left(\frac{\pi \cdot n}{4}\right) \cos \left(\frac{3 \pi \cdot n}{4}\right)}{\pi \cdot n} . \tag{2}
\end{equation*}
$$

1. [3\%] Plot the DTFT $W\left(e^{j \omega}\right)$ for the range of $-2 \pi \leq \omega \leq 2 \pi$.
2. [5.5\%] Plot the DTFT $H\left(e^{j \omega}\right)$ for the range of $-2 \pi \leq \omega \leq 2 \pi$.
3. [1.5\%] If $h[n]$ is the impulse response of a discrete-time LTI system. Is such a system a low-pass filter, a band-pass filter, or a high-pass filter?

Question 7: [10\%, Work-out question] Consider a continuous time LTI system. We know that for this particular system, when the input is

$$
x(t)= \begin{cases}1+t & \text { if }-1 \leq t<0 \tag{3}\\ 1-t & \text { if } 0 \leq t<1 \\ 0 & \text { otherwise }\end{cases}
$$

the output is

$$
y(t)= \begin{cases}1+t & \text { if }-1 \leq t<0 \tag{4}\\ 1 & \text { if } 0 \leq t<2 \\ 3-t & \text { if } 2 \leq t<3 \\ 0 & \text { otherwise }\end{cases}
$$

1. [5\%] Plot the output $y_{1}(t)$ for the range of $-4 \leq t \leq 4$ when the input is

$$
x_{1}(t)= \begin{cases}1 & \text { if }-1 \leq t<0 \tag{5}\\ -1 & \text { if } 0 \leq t<1 \\ 0 & \text { otherwise }\end{cases}
$$

2. [5\%] Plot the output $y_{2}(t)$ for the range of $-4 \leq t \leq 4$ when the input is

$$
x_{2}(t)= \begin{cases}1+t & \text { if }-1 \leq t<0 \tag{6}\\ 1+0.5 t & \text { if } 0 \leq t<1 \\ 3-1.5 t & \text { if } 1 \leq t<2 \\ 0 & \text { otherwise }\end{cases}
$$

Hint 1: You first need to write $x_{2}(t)$ in terms of $x(t)$. Hint 2: The above question is highly related to the concept of "linear interpolation".

Question 8: [15\%, Multiple-choice question] Consider two signals $h_{1}(t)=e^{-\int_{s=t-1}^{t+1} s^{2} d s}$ and $h_{2}[n]=\min \left(\cos \left((\pi n)^{2}\right), 0\right)$

1. [1.25\%] Is $h_{1}(t)$ periodic?
2. $[1.25 \%]$ Is $h_{2}[n]$ periodic?
3. [1.25\%] Is $h_{1}(t)$ even or odd or neither?
4. [1.25\%] Is $h_{2}[n]$ even or odd or neither?
5. [1.25\%] Is $h_{1}(t)$ of finite energy?
6. $[1.25 \%]$ Is $h_{2}[n]$ of finite energy?

Suppose the above two signals are also the impulse responses of two LTI systems: System 1 and System 2, respectively.

1. [1.25\%] Is System 1 memoryless?
2. [1.25\%] Is System 2 memoryless?
3. [1.25\%] Is System 1 causal?
4. [1.25\%] Is System 2 causal?
5. [1.25\%] Is System 1 stable?
6. [1.25\%] Is System 2 stable?

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X(j \omega) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10^{*} could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k}^{*} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=(N)} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Rumning Sum	$\sum_{k=-\infty}^{n} x[k]\binom{$ finite valued and periodic only }{ if $a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=\mathcal{O}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
Parseval's Relation for Periodic Signals$\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$		

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Parseval's Relation for Aperiodic Signals

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|X(j \omega)|^{2} d \omega
$$

FORM PAIRS

, we have consid. re summarized in which each prop. important Fourier upply the tools of
transform
; ω)
, $-\theta) d \theta$
$\cdot(0) \delta(\omega)$

$-j \omega)$

$\mathcal{P}_{\mathcal{e}}\{X(-j \omega)\}$
$-\mathscr{S}_{n}\{X(-j \omega)\}$
$-j \omega) \mid$
$\lceil X(-j \omega)$
ven
tginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0 j} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0}{ }^{\prime}}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$\begin{aligned} & a_{1}=1 \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=a_{-1}=\frac{1}{2} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\sin \omega_{0} t$	$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=-a_{-1}=\frac{1}{2 j} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$x(t)=1$	$2 \pi \delta(\omega)$	$a_{0}=1, \quad a_{k}=0, k \neq 0$ (this is the Fourier series representation for)
Periodic square wave $x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & T_{1}<\|t\| \leq \frac{T}{2}\end{cases}$ and $x(t+T)=x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right)$	$\frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)$	$a_{k}=\frac{1}{T}$ for all k
$x(t) \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \omega T_{1}}{\omega}$	-
$\frac{\sin W t}{\pi t}$	$X(j \omega)= \begin{cases}1, & \|\omega\|<W \\ 0, & \|\omega\|>W\end{cases}$	-
$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$e^{-a t} u(t), \mathcal{R} e\{a\}>0$	$\frac{1}{a+j \omega}$	-
$t e^{-a t} u(t), \mathcal{R e}\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\begin{aligned} & \frac{n^{n-1}}{(n-1)!} e^{-a t} u(t), \\ & \mathfrak{Q}\{a\}>0 \end{aligned}$	$\frac{1}{(a+j \omega)^{n}}$	-

table 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		$x[n]$	$X\left(e^{j \omega}\right)$ periodic with
		$y[n]$	$\left.Y\left(e^{j \omega}\right)\right\}$ period 2π
5.3.2	Linearity	$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$
5.3.3	Time Shifting	$x\left[n-n_{0}\right]$	$e^{-j \omega n_{0}} X\left(e^{j \omega}\right)$
5.3.3	Frequency Shifting	$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$
5.3.4	Conjugation	$x^{*}[n]$	$X^{*}\left(e^{-j \omega}\right)$
5.3.6	Time Reversal	$x[-n]$	$X\left(e^{-j \omega}\right)$
5.3.7	Time Expansion	$x_{(k)}[n]= \begin{cases}x[n / k], & \text { if } n=\text { multiple of } k \\ 0, & \text { if } n \neq \text { multiple of } k\end{cases}$	$X\left(e^{j k \omega}\right)$
5.4	Convolution	$x[n] * y[n]$	$X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)$
5.5	Multiplication	$x[n] y[n]$	$\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$
5.3.5	Differencing in Time	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) X\left(e^{j \omega}\right)$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j \omega}} X\left(e^{j \omega}\right)$
5.3.8	Differentiation in Frequency	$n \times[n]$	$\begin{aligned} & +\pi X\left(e^{j 0}\right) \sum_{k=-\infty}^{+\infty} \delta(\omega-2 \pi k) \\ & j \frac{d X\left(e^{j \omega}\right)}{d \omega} \end{aligned}$
5.3.4	Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right) \\ \operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}=\mathcal{R e}^{-j}\left\{X\left(e^{-j \omega}\right)\right\} \\ \mathscr{I}_{n z\{ }\left\{X\left(e^{j \omega}\right)\right\}=-\mathcal{I}_{m}\left\{X\left(e^{-j \omega}\right)\right\} \\ \left\|X\left(e^{j \omega}\right)\right\|=\left\|X\left(e^{-j \omega}\right)\right\| \\ \Varangle X\left(e^{j \omega}\right)=-\Varangle X\left(e^{-j \omega}\right) \end{array}\right.$
5.3.4	Symmetry for Real, Even Signals	$x[n]$ real an even	$X\left(e^{j \omega}\right)$ real and even .
5.3.4	Symmetry for Real, Odd Signals	$x[n]$ real and odd	$X\left(e^{j \omega}\right)$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$\begin{array}{ll} x_{e}[n]=\mathcal{E v}\{x[n]\} & {[x[n] \text { real }]} \\ x_{o}[n]=\operatorname{dd}\{x[n]\} & {[x[n] \text { real }]} \end{array}$	
5.3.9	Parseval's Re $\sum_{n=-\infty}^{+\infty}\|x[n]\|$	ation for Aperiodic Signals $=\frac{1}{2 \pi} \int_{2 \pi}\left\|X\left(e^{j \omega}\right)\right\|^{2} d \omega$	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_{k} of a periodic signal $x[n]$ are themselves a periodic sequence, we can expand the sequence a_{k} in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_{k} are the values of $(1 / N) x[-n]$ (i.e., are proportional to the values of the original

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_{k} e^{j k(2 n / N) n}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	a_{k}
$e^{j \omega_{0} n}$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta\left(\omega-\omega_{0}-2 \pi l\right)$	(a) $\begin{aligned} & \omega_{0}=\frac{2 \pi m}{N} \\ & a_{k}= \begin{cases}1, & k=m, m \pm N, m \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_{0} n$	$\pi \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)+\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} \omega_{0} & =\frac{2 \pi m}{N} \\ a_{k} & = \begin{cases}\frac{1}{2}, & k= \pm m, \pm m \pm N, \pm m \pm 2 N \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_{0} n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)-\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} & \omega_{0}\end{aligned} \quad=\frac{2 \pi r}{N} \quad \begin{aligned} \frac{1}{2 j}, & k=r, r \pm N, r \pm 2 N, \ldots,\end{aligned}, \begin{aligned}-\frac{1}{2 j}, & k=-r ;-r \pm N,-r \pm 2 N \\ 0, & \text { otherwise }\end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$x[n]=1$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta(\omega-2 \pi l)$	$a_{k}= \begin{cases}1, & k=0, \pm N, \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases}$
Periodic square wave $x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & N_{1}<\|n\| \leq N / 2\end{cases}$ and $x[n+N]=x[n]$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$\begin{aligned} & a_{k}=\frac{\sin \left[(2 \pi k / N)\left(N_{1}+\frac{1}{2}\right)\right]}{N \sin [2 \pi k / 2 N]}, k \neq 0, \pm N, \pm 2 N, \\ & a_{k}=\frac{2 N_{1}+1}{N}, k=0, \pm N, \pm 2 N, \ldots \end{aligned}$
$\sum_{k=-\infty}^{+\infty} \delta[n-k N]$	$\frac{2 \pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$a_{k}=\frac{1}{N}$ for all k
$a^{n} u[n], \quad\|a\|<1$	$\frac{1}{1-a e^{-j \omega}}$	-
$x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & \|n\|>N_{1}\end{cases}$	$\frac{\sin \left[\omega\left(N_{1}+\frac{1}{2}\right)\right]}{\sin (\omega / 2)}$	-
$\begin{aligned} & \frac{\sin W n}{\pi n}=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right) \\ & 0<W<\pi \end{aligned}$	$\begin{aligned} & X(\omega)= \begin{cases}1, & 0 \leq\|\omega\| \leq W \\ 0, & W<\|\omega\| \leq \pi\end{cases} \\ & X(\omega) \text { periodic with period } 2 \pi \end{aligned}$	-
$\delta[n]$	1	-
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{+\infty} \pi \delta(\omega-2 \pi k)$	$-$
$\delta\left[n-n_{0}\right]$	$e^{-j \omega \mu_{0}}$	
$(n+1) a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$	
$\frac{(n+r-1)!}{n!(r-1)!} a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{r}}$	

 'solez 'solod a asuodsar uopounfuәธ! xə [duos әut woIf 'OSIV '(Souənbarf จчt 10 uoupu aspudu! pue
(9601)
'LSOI Uo

amadord 8 t
01 pue 6 S.Ie
$t \mathrm{SOI}$ suone
כsay.L $81^{\circ} 0$
nolloy S pue
radord aqt
sied unofst
jo sumogsues
col गdurex
*ay 10 ss

TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $\delta[n-m]$	z^{-m}	$\begin{aligned} & \text { All } z \text {, except } \\ & 0 \text { (if } m>0 \text {) or } \\ & \infty(\text { if } m<0 \text {) } \end{aligned}$
5. $\alpha^{n} u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>\|\alpha\|$
6. $-\alpha^{n} u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|<\|\alpha\|$
7. $n \alpha^{n} u[n]$	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|>\|\alpha\|$
8. $-n \alpha^{n} u[-n-1]$	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|<\|\alpha\|$
9. $\left[\cos \omega_{0} n\right] u[n]$	$\frac{1-\left[\cos \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
10. $\left[\sin \omega_{0} n\right] u[n]$	$\frac{\left[\sin \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
11. $\left[r^{n} \cos \omega_{0} n\right] u[n]$	$\frac{1-\left[r \cos \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
12. $\left[r^{n} \sin \omega_{0} n\right] u[n]$	$\frac{\left[r \sin \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

10.7.1 Causality

A causal LTI system has an impulse response $h[n]$ that is zero for $n<0$, and therefore is right-sided. From Property 4 in Section 10.2 we then know that the ROC of $H(z)$ is the exterior of a circle in the z-plane. For some systems, e.g., if $h[n]=\delta[n]$, so that $H(z)=1$. the ROC can extend all the way in to and possibly include the origin. Also, in general, for a right-sided impulse response, the ROC may or may not include infinity. For example if $h[n]=\delta[n+1]$, then $H(z)=z$, which has a pole at infinity. However, as we say if Property 8 in Section 10.2, for a causal system the power series

$$
H(z)=\sum_{n=0}^{\infty} h[n] z^{-n}
$$

does not include any positive powers of z. Consequently, the ROC includes infinity. Sump marizing, we have the follow principle:

A discrete-time LTI system is causal if and only if the ROC of its system function is the exterior of a circle, including infinity.

