Midterm #3 of ECE301, Prof. Wang's section

8-9pm Wednesday, November 14, 2012, ME 1061,

- 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature in the space provided on this page, NOW!
- 2. This is a closed book exam.

Signature:

- 3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have one hour to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
- 4. Use the back of each page for rough work.
- 5. Neither calculators nor help sheets are allowed.

Name:	Solutions
Student ID:	
E-mail:	

Question 1: [20%, Work-out question, Learning Objectives 3, 4, and 5] Consider the following two signals x[n] and y[n]:

$$x[n] = \begin{cases} 1 & \text{if } 0 \le n \le 9 \\ 0 & \text{if } 10 \le n \le 19 \end{cases}$$

$$y[n] = \sin\left(\frac{3\pi}{10}n\right)$$

and we know that $z[n] = x[n] \cdot y[n]$

- 1. [8%] Find the discrete-time Fourier series a_k of x[n].
- 2. [5%] Find the discrete-time Fourier series b_k of y[n].
- 3. [7%] Denote the discrete-time Fourier series of z[n] by c_k . Find the value of c_4 .

Hint: You may need the following formula: When $r \neq 1$, we have $\sum_{k=1}^{K} ar^{k-1} = \frac{a(1-r^{K})}{1-r}$.

1.
$$q_{K} = \frac{1}{20} \sum_{n=0}^{9} e^{-j\frac{2\pi}{2}K} \kappa_{n}$$

$$= \frac{1}{20} \sum_{n=0}^{9} \left(e^{-j\frac{\pi}{10}K}\right)^{n}$$

$$= \frac{1}{20} \frac{1 - e^{-j\frac{\pi}{10}K}}{1 - e^{-j\frac{\pi}{10}K}} = \frac{1}{20} \frac{e^{-j\frac{\pi}{10}K}}{e^{-j\frac{\pi}{10}K}} \frac{\sin\left(\frac{\pi}{10}K\right)}{\sin\left(\frac{\pi}{10}K\right)}$$

$$= \frac{1}{20} \frac{e^{-j\frac{\pi}{10}K}}{1 - e^{-j\frac{\pi}{10}K}} = \frac{1}{20} \frac{e^{-j\frac{\pi}{10}K}}{e^{-j\frac{\pi}{10}K}} \frac{\sin\left(\frac{\pi}{10}K\right)}{\sin\left(\frac{\pi}{10}K\right)}$$

$$= \frac{1}{20} e^{-j\frac{\pi}{10}K} \frac{\sin\left(\frac{\pi}{10}K\right)}{\sin\left(\frac{\pi}{10}K\right)} \int_{0}^{\infty} e^{-j\frac{\pi}{10}K} \frac{\sin\left(\frac{\pi}{10}K\right)}{\sin\left(\frac{\pi}{10}K\right)}$$

$$= \frac{1}{20} e^{-j\frac{\pi}{10}K} \frac{\sin\left(\frac{\pi}{10}K\right)}{\sin\left(\frac{\pi}{10}K\right)} \int_{0}^{\infty} e^{-j\frac{\pi}{10}K} \frac{\sin\left(\frac{\pi}{10}K\right)}{\sin\left(\frac{\pi}{10}K\right)}$$

2.
$$y = \sin \left(\frac{3\pi}{18}n\right)$$

= $\sin \left(\frac{2\pi(3)}{20}n\right)$

= $\cot \left(\frac{2\pi(3)}{20$

3. Since $\times [n]$ and y [n] have equal periods,

We can apply the multiplication property of

the DT FS: $C_{K} = \sum_{k=0}^{19} q_{k} b_{K-k}$ $C_{K} = \sum_{k=$

Question 2: [20%, Work-out question, Learning Objective 4] Consider a Fourier transform pair $(x(t), X(j\omega))$. We know that

$$X(j\omega) = \frac{\cos(4\omega)\sin(2\omega)}{\omega}$$

- 1. [5%] Find the value of $\int_{-\infty}^{\infty} x(t)dt$?
- 2. [5%] Find the value of $\int_{-\infty}^{\infty} x(t)e^{j\frac{\pi}{2}t}dt$?
- 3. [10%] Plot x(t) for the range of $-7 \le t \le 7$.

1.
$$X(j\omega) = \int_{\infty}^{\infty} \chi(t) e^{j\omega t} dt$$

$$= \int_{\infty}^{\infty} \chi(t) dt = \chi(j(0))$$

$$= \lim_{\omega \to 0} \frac{\sin(2\omega)}{\omega}$$

$$= 2$$

2.
$$\int_{-\infty}^{\infty} z(t)e^{j\frac{\pi}{2}t}dt = \chi(j(\frac{\pi}{2}))$$

$$= \cos(-2\pi) \sin(\pi)$$

3.
$$\frac{5 \ln (2 \omega)}{\omega}$$
 IFT $\frac{1/2}{2}$, $\frac{1}{1} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2$

$$= \frac{e^{4j\omega}}{2} + \frac{e^{-4j\omega}}{2} \xrightarrow{\text{TFT}} \frac{1}{2} 8(t+4) + \frac{1}{2} 8(t-4)$$

Question 3: [23%, Work-out question, Learning Objectives 2, 4, and 5] Consider an LTI system for which the input/output relationship is governed by the following differential equation.

$$y(t) + \frac{d}{dt}y(t) = x(t-3) - \frac{d}{dt}x(t-3)$$

We also assume that the LTI system is *initially rest*. That is, if the input is x(t) = 0, then the output is y(t) = 0.

- 1. [8%] Find out the frequency response $H(j\omega)$ of this system.
- 2. [15%] Find out the output y(t) when the input is $x(t) = e^{-2t}\mathcal{U}(t)$.

Hint: If you do not know the $H(j\omega)$ the answer to the first sub-question, you can assume $H(j\omega) = \frac{1}{(1+j\omega)^2}$. You will get full credit for the second where $H(j\omega)$ expressions.

1. Taking the CTFT of each side of the equation, we get:

$$Y(j\omega) + j\omega Y(j\omega) = e^{j3\omega} X(j\omega) - j\omega e^{-j3\omega} X(j\omega)$$

The shifting property first, show differentiation than differentiation in time property.

$$(1+j\omega) Y(j\omega) = (e^{-j3\omega} - j\omega e^{-j3\omega}) X(j\omega)$$

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{e^{-j3\omega} - j\omega e^{-j3\omega}}{(1+j\omega)}$$

$$= e^{-j3\omega} \frac{(1-j\omega)}{(1+j\omega)}$$

$$\chi(\hat{j}\omega) = \frac{1}{2+\hat{j}\omega}$$

$$Y(\hat{j}\omega) = \frac{e^{-\hat{j}\omega} \left(1 - \hat{j}\omega\right)}{\left(1 + \hat{j}\omega\right) \left(2 + \hat{j}\omega\right)}$$

$$\frac{1-j\omega}{(1+j\omega)(2+j\omega)} = \frac{A}{1+j\omega} + \frac{B}{2+j\omega}$$

$$(=) \quad (-j\omega = A (2+j\omega) + B (1+j\omega)$$

$$\begin{cases} 2A+B = 1 \\ A+B = -1 \end{cases} \Rightarrow A = 2$$

Therefore, we have that

$$V(j\omega) = \frac{2e^{-j3\omega}}{1+j\omega} = \frac{3e^{-j3\omega}}{2+j\omega}$$

$$0.0 \text{ y(t)} = 2e^{-(t-3)}u(t-3) = 3e^{-2(t-3)}u(t-3)$$

Question 4: [17%, Work-out question, Learning Objectives 1, 4, and 5] We know that

$$x(t) = \cos(t) \tag{1}$$

Suppose that we would like to use Amplitude Modulation (AM) to send x(t) with the carrier frequency being 2000Hz. Let y(t) denote the output signal after modulation.

- 1. [5%] Write down the expression of y(t).
- 2. [7%] Suppose receiver-1 decides to use asynchronous demodulation. Plot the demodulate signal $\hat{x}(t)$ for the range of $-\pi < t < \pi$.
- 3. [5%] Suppose receiver-2 decides to use synchronous demodulation. Let w(t) denote the resulting signal after demodulation. Write down the relationship between y(t) and w(t). Your answer should consist of statements like "multiplying ..." and/or "using a filter ..." Please be specific about the parameters of the filters. If you prefer, you can also use a block diagram (flow chart) to describe your demodulation system instead of using sentences.

Question 5: [20%, Work-out question, Learning Objectives 4 and 5]

- 1. [8%] Suppose $x[n] = \sin(5n)$. Plot the discrete-time Fourier transform $X(e^{j\omega})$ for the range of $-\pi < \omega < \pi$.
- 2. [8%] Suppose $h[n] = \frac{\sin(\frac{\pi}{2}n)}{\pi n} e^{-j\pi n}$. Plot the discrete-time Fourier transform $H(e^{j\omega})$ for the range of $-\pi < \omega < \pi$.
- 3. [4%] Continue from the previous question. Suppose the above h[n] is the impulse response of an LTI system. Is the LTI system a low-pass filter, a band-pass filter, or a high-pass filter? This particular sub-question is a multiple-choice question. No need to justify your answer.

2. $\frac{\sin(\overline{z}_n)}{\pi n}$

3. A high-pass fitter.

Discrete-time Fourier series

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} \tag{1}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$
 (2)

Continuous-time Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$
(3)

$$a_k = \frac{1}{T} \int_T x(t)e^{-jk(2\pi/T)t}dt \tag{4}$$

Continuous-time Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega \tag{5}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \tag{6}$$

Discrete-time Fourier transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(j\omega) e^{j\omega n} d\omega \tag{7}$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(8)

Laplace transform

$$x(t) = \frac{1}{2\pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{j\omega t} d\omega$$
 (9)

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt \tag{10}$$

Z transform

$$x[n] = r^n \mathcal{F}^{-1}(X(re^{j\omega})) \tag{11}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \tag{12}$$

PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES TABLE 3.1

Property	Section	Periodic Signal	Fourier Series Coefficients
Tohered		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	a _k b _k
		A.(A.) Da(A)	$Aa_k + Bb_k$
Linearity	3.5.1	Ax(t) + By(t)	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi iT)t_0}$
Time Shifting	3.5.2	$x(t-t_0)$ $e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Frequency Shifting			a_{-k}^*
Conjugation	3.5.6	$x^*(t)$	a_{-k}
Time Reversal	3.5.3	x(-t) $x(\alpha t)$, $\alpha > 0$ (periodic with period T/α)	a_k
Time Scaling	3.5.4	$x(\alpha t), \alpha > 0$ (periodic	
		$\int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Periodic Convolution		J _T	
			$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
	3.5.5	x(t)y(t)	
Multiplication	51510	• • •	
		dx(t)	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
Differentiation		$\frac{dx(t)}{dt}$	1
Talling of the state of the sta			$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)$
₩		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\langle jk\omega_0\rangle^{-} \langle jk(2\pi/T)\rangle$
Integration		J _{-∞} periodic only if so	$a_k = a_{-k}^*$
			$\Re\{a_k\} = \Re\{a_{-k}\}$
			$o(e(a_k) = o(e(a-k))$
	256	v(t) real	$\begin{cases} \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \langle a_k = -\langle a_{-k} \rangle \end{cases}$
Conjugate Symmetry for	3.5.6	x(t) real	$ a_k = a_{-k} $
Real Signals			$ \langle a_k = - \langle a_{-k} \rangle $
-			a_k real and even
	3.5.6	x(t) real and even	a_k rear and even a_k purely imaginary and
Real and Even Signals	3.5.6	n(t) real and odd	
Real and Odd Signals		$\{x_o(t) = \mathcal{E}v\{x(t)\} [x(t) \text{ real}]$	$\Re\{a_k\}$
Even-Odd Decomposition		$\begin{cases} x_o(t) = \mathcal{E}\nu\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$	jIm{a _k }
of Real Signals			
		Parseval's Relation for Periodic Signals	
		$1 \int $	
		$\frac{1}{T}\int_{T} x(t) ^{2}dt = \sum_{k=-\infty}^{+\infty} a_{k} ^{2}$	

three examples, we illustrate this. The last example in this section then demonstrates how properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g(t) with a fundamental period of 4, shown in Figure 3.10. could determine the Fourier series representation of g(t) directly from the analysis of the G(2,0). Letterd tion (3.39). Instead, we will use the relationship of g(t) to the symmetric periodic sewave x(t) in Example 3.5. Referring to that example, we see that, with $T = \frac{1}{2}$ $T_1 = 1$,

$$g(t) = x(t-1) - 1/2.$$

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

. 3

ğ(1)

ella: Kita There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	a_k Periodic with b_k period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi iN)n}x[n]$ $x^*[n]$ $x[-n]$ $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi lN)n_0}$ a_{k-M} a^*_{-k} a_{-k} $\frac{1}{m}a_k$ (viewed as periodic) with period mN
timo ocamig	$\begin{cases} 0, & \text{if } n \text{ is not a multiple of } m \\ \text{(periodic with period } mN) \end{cases}$	\overline{m}^{a_k} with period mN
Periodic Convolution	$\sum_{r=\langle V\rangle} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{l=\langle N\rangle} a_l b_{k-l}$
First Difference	x[n] - x[n-1]	$(1-e^{-jk(2\pi/N)})a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi i N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a_{-k}^* \\ \operatorname{Re}\{a_k\} = \operatorname{Re}\{a_{-k}\} \\ \operatorname{Sm}\{a_k\} = -\operatorname{Sm}\{a_{-k}\} \\ a_k = a_{-k} \\ \stackrel{\checkmark}{}_{} a_k = -\stackrel{\checkmark}{}_{} a_{-k} \end{cases}$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even Odd Decomposition of Real Signals	$\begin{cases} x_o[n] = 8v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = 9d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re\{a_k\}$ $j\mathcal{G}m\{a_k\}$
	Parseval's Relation for Periodic Signals	
e de la companya de La companya de la co	$\frac{1}{N} \sum_{n = \langle N \rangle} x[n] ^2 = \sum_{k = \langle N \rangle} a_k ^2$	

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each prop-

In Table 4.2, we have assembled a list of many of the basic and important Fourier erty has been discussed. transform pairs. We will encounter many of these repeatedly as we apply the tools of

$x(t) \qquad x(t) \qquad x(t) \qquad x(j\omega) \qquad x(j\omega) \qquad x(t) \qquad x(j\omega) \qquad x(j\omega) \qquad x(t) \qquad x(t$	ABLE 4.1	PROPERTIES OF THE F	Aperiodic signal		
4.3.1 Linearity $ax(t) + by(t)$ $e^{-j\omega t_0}X(j\omega)$	Section			X(jω)	
4.3.1 Linearity $ax(t) + by(t)$ $e^{-j\omega t_0}X(j\omega)$ $bY(j\omega)$ $e^{-j\omega t_0}X(j\omega)$ 4.3.2 Time Shifting $x(t-t_0)$ $X(j(\omega-\omega_0))$ 4.3.5 Frequency Shifting $x^*(t)$ $X^*(-j\omega)$ $X(-j\omega)$ 4.3.5 Time Reversal $x(-t)$ $1 \\ a X \\ a$				1 (Jw)	
4.3.1 Linearity $x(t) + by(t)$ $e^{-j\omega t} \chi(j\omega)$ 4.3.2 Time Shifting $e^{j\omega_0 t} \chi(t)$ $\chi(j(\omega - \omega_0))$ 4.3.3 Conjugation $\chi^*(t)$ $\chi(-j\omega)$ 4.3.5 Time Reversal $\chi(-t)$ $\chi(-t)$ $\chi(-j\omega)$ 4.3.5 Time and Frequency $\chi(at)$ $\chi(-t)$ $\chi(-t)$ $\chi(-t)$ 4.3.6 Convolution $\chi(t) y(t)$ $\chi(-t)$		•			
4.3.1 Linearly Time Shifting $x(t-t_0)$ $x(t)$ $x(-t_0)$			$\mathbf{r}(t) + b\mathbf{y}(t)$	$aX(j\omega) + bY(j\omega)$	
4.3.2 Intersection of the strength of the str	4.3.1	Linearity		$V(i(\omega - \omega_0))$	
4.3.6 Frequency Shifting $x^*(t)$ x^*		Time Shifting ^		A(J(a won	
4.3.3 Conjugation $x(-t)$ $x($	-1.012	Frequency Shifting			
4.3.5 Time Reversal $x(at)$ 4.3.5 Time and Frequency $x(at)$ Scaling 4.4 Convolution $x(t) * y(t)$ 4.5 Multiplication $x(t)y(t)$ 4.6 Differentiation in Time $\frac{d}{dt}x(t)$ 4.3.4 Integration 4.3.6 Differentiation in Frequency 4.3.7 Conjugate Symmetry for Real Signals 4.3.8 Symmetry for Real and $x(t)$ real $x(t)$ real and even 4.3.9 Symmetry for Real and $x(t)$ real and even 4.3.0 Even Signals 4.3.1 Symmetry for Real and $x(t)$ real and odd 4.3.2 Symmetry for Real and $x(t)$ real and odd 4.3.3 Symmetry for Real and $x(t)$ real and odd 4.3.4 Odd Signals 4.3.5 Time and Frequency $x(t) * y(t)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) Y(j(\omega - \theta)) d\theta}{\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)} \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{x} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta(\omega) \right)$ $\frac{1}{2\pi} \left(\frac{x}{y} (j\omega) + \pi x(0) \delta$		Conjugation			
4.3.5 Time and Frequency Scaling 4.4 Convolution $x(t) * y(t)$ 4.5 Multiplication $x(t)y(t)$ 4.3.4 Differentiation in Time $\frac{d}{dt}x(t)$ 4.3.4 Integration $\int_{-\infty}^{t} x(t)dt$ 4.3.6 Differentiation in Frequency 4.3.7 Conjugate Symmetry for Real Signals 4.3.8 Symmetry for Real and Even Signals 4.3.9 Symmetry for Real and Odd Signals 4.3.0 Fixed Properties of the state of	4.3.5	Time Reversal	W. W	$\frac{1}{1-1}X\left(\frac{f\omega}{-1}\right)$	7
Scaling 4.4 Convolution $x(t) * y(t)$ 4.5 Multiplication $x(t)y(t)$ 4.3.4 Differentiation in Time $\frac{d}{dt}x(t)$ 4.3.4 Integration $\int_{-\infty}^{t} x(t)dt$ 4.3.6 Differentiation in Frequency $x(t) = x(t)$ 4.3.7 Conjugate Symmetry for Real Signals 4.3.8 Symmetry for Real and Even Signals 4.3.9 Symmetry for Real and Odd Signals 4.3.0 Differentiation in $tx(t)$ $x(t) = x(t) = x(t$			x(at)	1.00	
4.4 Convolution $x(t) * y(t)$ $\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$ 4.5 Multiplication $x(t)y(t)$ $j\omega X(j\omega)$ 4.3.4 Differentiation in Time $\frac{d}{dt}x(t)$ $j\omega X(j\omega)$ 4.3.5 Differentiation in $tx(t)$ $j\frac{d}{d\omega}X(j\omega)$ 4.3.6 Differentiation in Frequency $x(t)$ real $x(t)$ $y(t)$ $y($	4.3.5	41		$X(j\omega)Y(j\omega)$	
4.5 Multiplication $X(t)$ $Y(t)$ $Y($		Scaning	x(t) * y(t)	$1 \int_{0}^{+\infty} V(i(\alpha) - \theta) d\theta$	
4.5 Multiplication $X(t)$ $Y(t)$ $Y($	4.4	Convolution		元 (2元)	
4.3.4 Differentiation in Time $\frac{d}{dt}x(t)$ 4.3.4 Integration $\int_{-\infty}^{t} x(t)dt \qquad \frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ 4.3.6 Differentiation in Frequency $\int_{-\infty}^{t} x(t)dt \qquad \frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ 4.3.3 Conjugate Symmetry for Real Signals $\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re \{X(j\omega)\} = \Re \{X(\tau)\} \\ \Im \{X(j\omega)\} = -\Im \{X(\tau)\} $	45	Multiplication			
4.3.4 Integration $\int_{-\infty}^{t} x(t)dt = \frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ 4.3.6 Differentiation in $tx(t)$ $j\frac{d}{d\omega}X(j\omega)$ 4.3.6 Differentiation in $tx(t)$ $j\frac{d}{d\omega}X(j\omega)$ 4.3.7 Conjugate Symmetry $t(t)$ real for Real Signals $\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re \{X(j\omega)\} = \Re \{X(\tau)\} \\ \Im \{X(j\omega)\} = -\Im \{X(\tau)\} \\ X(j\omega) = X(-j\omega)\} \\ X(j\omega) = X(-j\omega)\} \\ X(j\omega) = X(-j\omega)\} \\ X(j\omega) = -4X(-j\omega) \\ X(j\omega) = -$	4.5		$\frac{d}{dx}(t)$	JWA (JW)	
4.3.4 Integration $\int_{-\infty}^{t} x(t)dt = \frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ 4.3.6 Differentiation in Frequency $tx(t) = \frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $\frac{1}{j\omega}X(j\omega)$	4.3.4	Differentiation in Time	dt^{-c}	1 0/ 0	
4.3.4 Integration $j \frac{d}{d\omega}X(j\omega)$ 4.3.6 Differentiation in Frequency $j \frac{d}{d\omega}X(j\omega)$ 4.3.7 Conjugate Symmetry for Real Signals $x(t)$ real $x(t)$ real and even 4.3.3 Symmetry for Real and Even Signals $x(t)$ real and even 4.3.4 Even Signals $x(t)$ real and even $x(t)$ real and even $x(t)$ real and even $x(t)$ real and odd	-,,,,,,		۲۱	$\frac{1}{1-X(j\omega)} + \pi X(0)\delta(\omega)$	
4.3.6 Differentiation in Frequency		Tuto orotion	x(t)dt		
4.3.6 Differentiation in Frequency 4.3.6 Frequency 4.3.7 Conjugate Symmetry for Real Signals 4.3.8 Symmetry for Real and Even Signals 4.3.9 Symmetry for Real and Odd Signals 4.3.0 Conjugate Symmetry $x(t)$ real $x(t)$ real and even $x(t)$ real and even $x(t)$ real and even $x(t)$ real and odd $x(t)$ real x	4.3.4	Integration	3	$j\frac{a}{1}X(j\omega)$	
Frequency 4.3.3 Conjugate Symmetry for Real and Even Signals 4.3.3 Symmetry for Real and Odd Signals $x(t) \text{ real and even}$ $x(t) \text{ real and odd}$		n:co-contintion in	tx(t)	WW	
4.3.3 Conjugate Symmetry for Real and Even Signals 4.3.3 Symmetry for Real and Even Signals 4.3.3 Symmetry for Real and Odd Signals $x(t) \text{ real and even}$ $x(t) \text{ real and odd}$	4,3.6	Differentiation		$(X(j\omega) = X^*(-j\omega)$	
4.3.3 Conjugate Symmetry for Real and Even Signals 4.3.3 Symmetry for Real and Even Signals 4.3.3 Symmetry for Real and Odd Signals $x(t) \text{ real and even}$ $x(t) \text{ real and odd}$		Liedneme		1 m = (v(in)) = (le(x))	jω)
4.3.3 Conjugate Symmetry for Real Signals 4.3.3 Symmetry for Real and Even Signals 4.3.3 Symmetry for Real and Odd Signals 4.3.4 Symmetry for Real and $x(t)$ real and odd $x(t) \text{ real and even}$ $x(t) \text{ real and odd}$				$\int d^{2}x(y)dx = -\int d^{2}xdx$	(= j
for Real Signals for Real Signals $ \begin{array}{lll} (x(j\omega) = -4X(-7)\omega \\ (x(j\omega)) & (x(j\omega)) \\ $			w(t) real	(9m{A(Ju))	
for Real Signals for Real Signals $ \begin{array}{lll} (x(j\omega) = -4X(-5)\omega \\ (x(j\omega)) & (x(j\omega)) \end{array} $ 4.3.3 Symmetry for Real and Even Signals 4.3.3 Symmetry for Real and Odd Odd Signals $ \begin{array}{lll} (x(t)) & (x(t)) & (x(t)) \\ (x(t)) & (x(t)) & (x(t)) & (x(t)) \\ (x(t)) & (x(t)) & (x(t)) & (x(t)) & (x(t)) \\ (x(t)) & (x(t)) & (x(t)) & (x(t)) & (x(t)) & (x(t)) \\ (x(t)) & (x(t)) $	123	Conjugate Symmetry	X(t) 10a1	$ X(j\omega) = X(-j\omega) $	W.
4.3.3 Symmetry for Real and $x(t)$ real and even Even Signals Symmetry for Real and $x(t)$ real and odd Even Signals Odd Signals $x(t)$ real and odd	4.3.3	for Real Signals		$\forall \mathbf{v}(i\omega) = -\mathbf{x}\mathbf{x}(\mathbf{x})$	IJΙ
4.3.3 Symmetry for Real and $x(t)$ real and odd Even Signals 4.3.3 Symmetry for Real and $x(t)$ real and odd Even Signals $x(t)$ real and odd $x(t)$ real and odd Odd Signals $x(t)$ real and odd $x(t)$ real and odd Re{ $X(j\omega)$ } $x_e(t) = \delta v\{x(t)\}$ [$x(t)$ real] Figure Odd Decomposity $x_e(t) = \delta d\{x(t)\}$ [$x(t)$ real] $y \in X(j\omega)$				$X(i\omega)$ real and even	
4.3.3 Symmetry for Xear Even Signals 4.3.3 Symmetry for Real and $x(t)$ real and odd Angle $X(j\omega)$ purely imaginary		for Real and	x(t) real and even	***	
4.3.3 Symmetry for Real and $x(t)$ real and odd $x(t)$ real $x(t)$	4.3.3	Symmetry for Real and		X(iω) purely imaginar	Y all
4.3.3 Symmetry for Real Odd Signals $x_e(t) = \delta v\{x(t)\} [x(t) \text{ real}] \Re e\{X(j\omega)\}$ $x_e(t) = \delta v\{x(t)\} [x(t) \text{ real}] j \text{ fm}\{X(j\omega)\}$		Even Signals	x(t) real and odd	(Pi)	
Odd Signals $x_e(t) = \mathcal{E}v\{x(t)\} [x(t) \text{ real}] \text{otherwise}$ $x_e(t) = \mathcal{E}v\{x(t)\} [x(t) \text{ real}] \text{if } m\{X(j\omega)\}$	4,3,3	Symmetry for Real and		$\Re e\{X(i\omega)\}$	
From Odd Decompo- $x(t) = Od\{x(t)\}$ [x(t) real]		Odd Signals	$x_{\nu}(t) = \mathcal{E}\nu\{x(t)\}$	- (V(in))	
SIGNI IN 160 1500	4.3.3	Even-Odd Decompo	$f' = \mathcal{O}_{x}(t) = \mathcal{O}_{x}(t)$	$[x(t) \text{ real}] j^{9m(\Delta \setminus j \cup j)}$	
1-			•		
nals		nais			

4.3.7 Parseval's Relation for Aperiodic Signals
$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(j\omega)|^2 d\omega$$

ORM PAIRS

Chap. 4

e have considsummarized in nich each prop-

portant Fourier ly the tools of

ınsform

 θ)) $d\theta$

gent Sent X 13

icari) : 1180 70 SM(I)

111

 $\delta(\omega)$

) . $[X(-j\omega)]$ $rs\{X(-j\omega)\}$ ı)j

 $-j\omega$)

ary and odd

DAGIC COLIDIED TOANGEOOM DAIDS

		Fourier series coefficients
Signal	Fourier transform	(if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\omega}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
e ju _u i	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
cos ω ₀ t	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$
sin w ₀ t	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(t)$	1	_
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	
$\delta(t-t_0)$	e ^{-jωt} 0	_
$e^{-at}u(t)$, $\Re\{a\}>0$	$\frac{1}{a+j\omega}$	_
$te^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	_
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	· —

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal		Fourier Transform
		x[n] y[n]		$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π
5.3.2	Linearity	ax[n] + by[n]		$aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3	Time Shifting	$x[n-n_0]$		$e^{-j\omega n_0}X(e^{j\omega})$
5,3,3	Frequency Shifting	$e^{j\omega_0n}x[n]$		$X(e^{j(\omega-\omega_0)})$
5.3.4	Conjugation	$x^*[n]$		$X^{\bullet}(e^{-j\omega})$
5.3.6	Time Reversal	x[-n]	if n — multiple of k	$X(e^{-j\omega})$
5,3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x_1 n x_1, \\ 0, \end{cases}$	if $n = \text{multiple of } k$ if $n \neq \text{multiple of } k$	$X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]		$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]		$\frac{1}{2\pi}\int_{2\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]		$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=1}^{n} x[k]$		$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]		$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$ $\int X(e^{j\omega}) = X^*(e^{-j\omega})$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real		$\Re \{X(e^{j\omega})\} = \Re \{X(e^{-j\omega})\}$ $\Im m\{X(e^{j\omega})\} = -\Im m\{X(e^{-j\omega})\}$ $ X(e^{j\omega}) = X(e^{-j\omega}) $ $\langle X(e^{j\omega}) = -\langle X(e^{-j\omega})\rangle$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even		$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd		$X(e^{j\omega})$ purely imaginary and odd
5,3,4	Even-odd Decomposition	$x_{\epsilon}[n] = \mathcal{E}\nu\{x[n]\}$	[x[n] real]	$\Re e\{X(e^{j\omega})\}$
J.J.T	of Real Signals	$x_n[n] = \Theta d\{x[n]\}$		$jSm\{X(e^{j\omega})\}$
5.3.9		elation for Aperiodic		
2.2.5	$\sum_{n=-\infty}^{+\infty} x[n] $	$ ^2 = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^2$	² dω	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_k of a periodic signal x[n] are themselves a periodic sequence, we can expand the sequence a_k in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_k are the values of (1/N)x[-n] (i.e., are proportional to the values of the original

 $X_2(e^{i\omega})$. The odic convolu-

5.15.

te-time Fourier
1 Table 5.2, we ansform pairs

etry or duality corresponding n (5.8) for the time Found lition, there

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

	Fourier Transform	Fourier Series Coefficients (if periodic)
Signal $\sum_{k=\langle N \rangle} a_k e^{jk(2nlN)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
e ^{jω} oπ	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2J}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2J}, & k = -r, -r \pm N, -r \pm 2N, \dots \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_{k} = \frac{\sin[(2\pi k/N)(N_{1} + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_{k} = \frac{2N_{1} + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\Big(\omega-\frac{2\pi k}{N}\Big)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	_
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	_
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	
δ[n]	1	
u[n]	$\frac{1}{1-e^{-J\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	-
$\delta[n-n_0]$	e ^{jωn} 0	
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <$	$1 \qquad \frac{1}{(1-ae^{-j\omega})^r}$	