|

Midterm #3 of ECE301, Prof. Wang’s section
8-9pm Wednesday, November 14, 2012, ME 1061,

1. Please make sure that it is your name printed on the exam booklet. Enter your

student ID number, e-mail address, and signature in the space provided on this
page, NOW!

2. This 1s a closed book exam.'

3. This exam contains multiple choice questions and work-out questions. For multiple
choice questions, there is no need to justify your answers. You have one hour to
complete it. The students are suggested not spending too much time on a single
question, and working on those that you know how to solve.

4. Use the back of each page for rough work.

5. Neither calculators nor help sheets are allowed.
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Student ID:
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Question 1: [20%, Work-out question, Learning Objectives 3, 4, and 5] Consider the

following two signals z[n] and y[n):

if0<n<9

if10<n<19
periodic with period 20

. fom
y[n] = sin (Efn)
and we know that z[n] = z[n] - y[n].
1. [8%] Find the discrete-time Fourier series ay of z[nl.
2. [5%] Find the discrete-time Fourier series by, of y[n].
3. [7%)] Denote the discrete-time Fourier series of z[n] by cx. Find the value of ¢4

Hint: You may need the following formula: When r # 1, we have SN ark
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Question 2: [20%, Work-out question, Learning Objective 4] Consider a Fourier transform
pair {z(t), X (jw)). We know that

X(jw) = cos(4w) sin(2w)
9= w
1. [5%] Find the value of [ z(t)dt?
2. [5%) Find the value of {7 z(t)e’2'dt?

3. [10%] Plot z(¢) for the range of =7 <t <T.
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Question 3: [23%, Work-out question, Learning Objectives 2, 4, and 5 Consider an LTI
system for which the input/output relationship is governed by the following differential
equation.

)+ Sylr) =l -3 - Lot -3)

d

We also assume that the LTI system is énitially rest. That is, if the input is z(t) = 0,
then the output is y(t) = 0.

1. [8%)] Find out the frequency response H(jw) of this system.
2. [15%)] Find out the output y(¢) when the input is z(t) = e~ 2U(t).

Hint: If you do not know the H(jw) the answer to the first sub-question, you can assume
H(jw) = You will get full credit for the second afid
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Question 4: [1T%, Work-out question, Learning Objectives 1, 4, and 5] We know that \

z(t) = cos(l) (1)

Suppose that we would like to use Anplitude Modulation (AM) to send z(t) with the
carrier frequency being 2000Hz. Let y(t) denote the output signal after modulation.

1. [5%] Write down the expression of y(t).

2. [7%] Suppose receiver-1 decides to use asynchronous demodulation. Plot the demod-
ulate signal Z(t) for the range of —m <t <.

3. [5%] Suppose receiver-2 decides to use synchronous demodulation. Let w(t) denote
the resulting signal after demodulation. Write down the relationship between y(t)
and w(t). Your answer should consist of statements like “multiplying ...” and/or
“using a filter ...” Please be specific about the parameters of the filters. If you prefer,
you can also use a block diagram (flow chart) to describe your demodulation system
instead of using sentences.
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Question 5: [20%, Work-out question, Learning Objectives 4 and 5|

1. [8%)] Suppose z[n] = sin(5n). Plot the discrete-time Fourier transform X (e™) for
the range of —T < w < 7.

2. [8%] Suppose h[n] = %)*e‘jm. Plot the discrete-time Fourier transform H (e?)
for the range of —w < w < 7.

3. [4%] Continue from the previous question. Suppose the above hin] is the impulse
response of an LTT system. Is the LTI system a low-pass filter, a band-pass filter,
or a high-pass filter? This particular sub-question is a multiple-choice question. No
need to justify your answer.
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Discrete-time Fourier series

zln] = Z akejk:(Zz’r/N)n
k=(N)

1 .
a’k‘ ] ﬁ Z x[ﬂle_Jk(gﬂllN)n
n=(N)
Continuous-time Fourier series

o0
a:(t):: Z akejk(er/T)t

k=—o0
1 .
ay = ?/ m(t)e_gk(z’r/ﬂtdt
T

Continuous-time Fourier transform
1 ot
t) = — X{ju)e™td
o) = 5 [ X(wpeias
cm .
X (juw) = f £(t)e~ " ds
—00

Discrete-time Fourier transform

1 .
zn] = 5 ], X(jw)e™ ™ dw
X(e™) = Z zn]e™ "

Laplace transform
z(t) = Lo /oo X (o + jw)e™tdw
27 o
X(s)= f z(t)e*dt
Z transform

z[n] = P FH X (re™))

s e]

X(z)= Z zn]z™"

n=—co
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TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Fourier Series Representation of Periodic Signals  Cha

Fonrier Series Coefficient

Property Section Periodic Signal
x(f)) Periodic with period T and
y() fundamental frequency we = 2wiT
Linearity 351 Ax() + By{)
Time Shifting 352 x(r — to)
Frequency Shiffing oMt (1) = e M2V ()
Conjugation 3.5.6 XD
Time Reversal 353 x(—1t}
Time Scaling 354 x(eed), o > 0 (pedodic with period T/a)
Periodic Convolution j xtryy — 1T
T
Muitiplication 3.5.5 2yt
Differentiation )
dt
. t (finite valued and
Tntogration I - xedt periodic only if ag = )
Conjugate Symmetry for 3.5.6 x(t) real
Real Signals
Real and Even Signals 356 x(¢) real and even
Real and Odd Signals 356 x(£) real and odd
Even-Odd Decomposition [xe(t) = &{x(®)} [x()real]
of Real Siguals x,(f) = O} 1) reall

<0

1 4
5"L w@Pdt = > laid

k=—o

Tdkbk

.
z arby-r

fm—n

jkmua;, = jkz%ra;‘

g =
Fran | (jk(z

ap = aty
Relay} = Rela
Imia} = —9mla
o = i

Yayp = —Ld-g

three examples, we illustrate this.

Example 3.6

T[ = 1,

glt) = x¢t— 1~ 1/2.

The last example in this section then demo
properties of 2 signal can be used to characterize the signal in great detail.

Consider the signal g(f) with a fundamental period of 4, shown in-
could determine the Fourier series representation of g(#) directly from t
tion (3.39). Instead, we will use the relationship of g(f) to the symme
wave x(f) in Example 3.3. Referring to that example, we §¢& that, ;

tri



Sec. 3.7 Properties of Discrete-Time Fourier Series 221

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(9),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evalnating the limit as the number of terms approaches infinity.

;3? PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series, This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FQURIER SERIES

Property

Periodic Signal

Fourier Series Coefficients

 Time Shifting

requency Shifting

x{n] } Periodic with petiod N and
y[#] ) fundamental frequency wy = 2w/N

Ax[n] + By(n)

x[n— np)
ejM(anNln x[u]

x"[n]
x[—n]
X[t} = x[nfm], if nis a multiple of m
= 1o, if n is not a multiple of m
(periadic with period mN)
> xlrlyln-r]
r={N}
x[alyfn]

x[n] = x[n 1]
Z o (fimte valued and periodic on,ly)
ifag =0

k=-—u
xjn] real

x[~n] real and even
x[»] real and odd

[x,[nl = Ev{alnl} (x[n] real]
x.[n] = Od{x[n]} [x[n] real]

Parseval’s Relation for Periodic Signals

,l\, 2 bl = > el

A=} k={V}

a | Periodic with
by j period N

ake—jk(Z'm'NJnn

af..,u

L

Qg

1 iewed as periodic
m Cvnh period mN )

N a;‘b;;

Z arby—;

T=(N}
(1 - e—-;k(%m))ak

(EI_—éTlﬂ‘(_z‘m'F)j )ak
a4 =a; :
Relai} = Refa_i}
Imia} = —Imia_c}
|al = lasl
¥ap = —La_;
ay. real and even
a; purely imaginary and odd
Re{a,}
Jj9m{a}




4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIR

328 The Gontinuous-Time Fourier Transform

In the preceding sections and in the problems at ihe end of the chapter, We have ¢
ered some of the important properties of the Fourier transforn. i
Table 4.1, 10 which we have also indicated the section of this

erty has been discussed. _
[n Table 4.2, we have assembled a Jist of many of the basic and important Folids

transform pairs. We will encountet many of these repeatedly as We apply the tooly

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM
Section Property Aperiodic signal Fourier transform

431 Linearity ax() + byl aX( jw) pY(jw)
432 Time Shifting x(t ~ to) e X{jw)
436 Frequency Shifing give! x(t) Xt j(w — @a))
433 Conjugation x(0) X' jo)
435 Time Reversal *%(—£) X(—jw)
435 Time and Frequency x(at) ﬁX 19
Scaling oo\ E
4.4 Convolation x() * Y X( jw)_iigjc_nl_
45 Multipication O i‘;,r“xue)m(w ~ o
434 Differentiation in Time -;% x() jowX( jo)
1 :
434  Intogration [ ()t ]—%X( ) + TXOB
436 Differentiation in (1t} jEd-X( joo)
Freque o
guency
X(jw) = (- jo)
RefX(jo)y = (Ref
433 Conjugaie Symmetry x(f) real g X (julk = ~H
for Real Signals X (je)l = 1X(- e
FX(jw) = -
433 Symmetry for Real and x(r) real and even X{(juw) real and evell
Even Signals
433 Symmetry for Real and x(t) real and odd X(jo) purely imag
Odd Signals

x {0 = Bula ()} [x(p) real RefX(joR

433 Ryen-0dd Decompd- , ;
o for Real AR Ol Pdlxn}  Lx(e) reall X ok

43.1 Parseval’s Relation for Apetiodic Signals
4o 1 +o
2= NG
[ ioras = 57 [ eofao
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Sec.4.6  Tablas of Fourier Properties and of Basic Fourler Transform Pairs 329

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Fourier series coefficlents

Signal Fourier transform (if periodic)

) . il
Z a el 27 Z a8l — ko) a
k= - k=-w '
giwat 278(w — wp) @ =1

a; = 0, otherwise

= foy = 1

C08 wyl w[8(e — @) + Blw + we)] o _ i =32 .

a; = 0, otherwise

1

. ka _ _ a = —d. = 3
sin ot j[b‘(w wo} = 8( + o)l a, = 0, otherwise

a=1 a=0 k=0
xt) =1 2 8(w)

this is the Fourier series representation for
any choiceof T > 0

Petiodic square wave
I, Ji<T
*h = [0, Ti<li=1l
and
x(t+TYy= xp)

heo

z 2sin ’:ﬂng 6(&) _ kwg)

k=—c

wT) sinc (kng|)= sin keo T}
T T kw

—

i 2m 2k ]
n;@a(: - nT) T k;ﬂa( - —T—) a = z forallk
i, |I[ <T ZSiHWTl
.x(t)[ g, itl =Ty P -
sin Wt o L jel<wW
TE ngm) B [ 0, |o|l>wW
E163)] 1 —
w(t) . — + 7 8(®) —
8( —tg) g~ Jun —
e~ u(f), Refa} > 0 ! .
' : a+ jw
te~ u(t), Refa} > 0 1 —_
’ {a+ jwy
(::1‘)1 e ufd), 1 _
(a+ jwy

Refa} >0
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Sec. 5.7 Duality

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFOHM

N

Section  Property Aperlodic Signal Fourler Transform
x[nl X(ef‘“)] periodic with
¥inl Y(e™}] period 27
532 Linearity ax{a] + by[n] aX(e™) + bY(e™)
533 Time Shifting x[n - nol Patie) (CL)
533 Frequency Shifting /o0 x(n) X(e/@-uohy
534 Conjugation x[n] X'e™ )
33.6 Timie Reversal x[—nl X(e™ )
. . _ x{n/kl, if n = multiple of & ™
337 Time Expansion Xplnl = [ 0 if n % multiple of & X(e™)
5.4 Convolution x[n]* ylnl X(e/*)¥(e™)
55 Multiplication x[nlyinl 5% [ X(e®)Y (e~ ™M)dg
2w
535 Differencing in Time x[nj— x[n - 1] (1 — e~ )X(e)
2 1
. R S
535 Accumulation gux[k] T X(e)
+m
+aX(e) > 8w = 2wk
k-
. Joo
538 Differentiation in Frequency  nxin] ‘dsz’ )
X(el?) = X*(e™™)
RelX(e/*)} = Re{X(e ™)}
534 Conjugate Symmetry for x[n] real Im{X(e/*)} = —Im{X(e i)}
Real Signals |X(eh) = X(e~)
LX(e™) = ~4X(e™ ™)
534 Symmetry for Real, Even x[n] real an even X(e'*) real and even
Signals )
534 Symmetry for Real, Odd x[n] real and odd X(e’*) purely imaginary and
Signals . odd
534 Even-odd Decomposition”  z.[n] = Sv{x[nl} [x[n] reall RefX(e™)}
of Real Signals x,0n] = Od{xInlt [x[n) reall JIm{X (e %
539 Parseval’s Relation for Aperiodic Signals

S Il

P

1

27

= o | Wempdo
2w

a duality relationship between the discrete-time Fourier transform and the continuous-time
Fourier series. This relation is discussed in Section 5.7.2,

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a
sequence, we can expand the
discrete-time Fourier series imp
quence ay, are the values of (1/N)x[—

sequence @y

periodic signal x{»] are themselves a periodic
in a Fourier series. The duality property for
lies that the Fourier series coefficients for the periodic se-
r] (i.e., are proportional to the values of the original



TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal

Fourier Transform

Fourier Series Coefficlents (if periodic)

Z akejk{meN)ﬂ
k={¥

-y
27 Z akﬁ(m - ?‘_{.1;_1‘)

om0

ax

P Jwoll

422
2 S 8w —wo - 2m])

J=—t

o2

W w = |
i, k=mmENmLIN,.
, otherwise

(0 ireational = The signal is apericdic

€08 LN

ot
7> {Blo~wo— 2D + S(ew + wq —~ 2w}

=—0

@ w =5
L k=tmEmEN tmEd

N 0, otherwise
(b jvrational = The signal is aperiodic

sinwgn

T i (3w — wp — 2l) — 8 + wo —~ 2o7l}}

}=—ur

(@) =5 :
2'_}' k=rnrtNrx2y

_1d =
g k=
0, otherwise
jrrational 2> The signal is aperio

xRl =1

oo
2 > 8w = 2ml)

f=—m

1, k=0=xN=ZIN. ..
0, otherwise

Periodic square wave
1, 1)’1' =N

HY =40 Ny <l = N2

and
x[n+ N1 = xin]

oo
2ar Z a;‘B(w - 2—;?}

SIfEakNN + 3] '
= —NEmEAEN Ho'_”’ ;
_ 2N+ 1

=N k=0 N £2N,...

i 8[n — kN]
[

atuln], lal<1

i—ae o

B 1, [n] = N|
Hrl= [0, |} = Ay

sinfw(N| + 5]
sin(w/2)

w

o<W<w

ot _ W gine (Wn
o smc(")

], 0slwl =W
X(w) =

0 W<lp|=m
X{w) periodie with period 27

&[n)

i

uln]

1

4@
=" > wéw - 2wk

= a0

&ln— ngl

e“‘_,'h”fu

(n+ Daulnl, | <1

1
{({-ae o)

(n+r—=11 ,

—n-!(—r'_'—l‘)l—a u[n]. lﬂ' <1

1
(1 —ae oy




