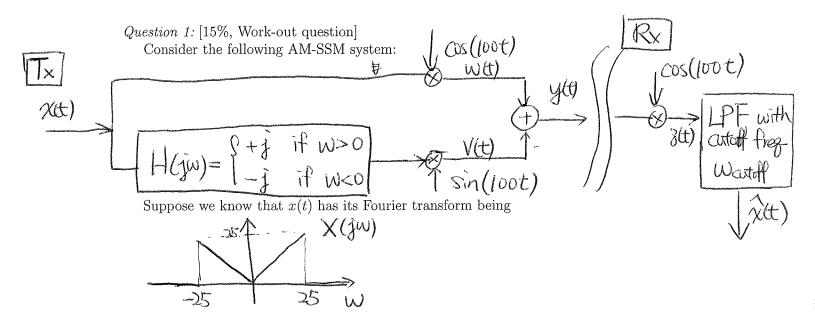
Final Exam of ECE301, Prof. Wang's section

Monday 3:20–5:20pm, December 12, 2011, PHYS 114.

- 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature in the space provided on this page, **NOW!**
- 2. This is a closed book exam.
- 3. This exam contains multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have two hours to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
- 4. Neither calculators nor help sheets are allowed.

Name: Student ID: E-mail: Signature:



Answer the following questions with carefully marked horizontal and vertical axes:

- 1. [3%] Plot $W(j\omega)$, the Fourier transform of w(t) for the range of $-250 < \omega < 250$.
- 2. [3%] Plot $V(j\omega)$, the Fourier transform of v(t) for the range of $-250 < \omega < 250$.
- 3. [3%] Plot $Y(j\omega)$, the Fourier transform of y(t) for the range of $-250 < \omega < 250$.
- 4. [3%] Plot $Z(j\omega)$, the Fourier transform of z(t) for the range of $-250 < \omega < 250$.
- 5. [3%] What is the range of the cutoff frequency ω_{cutoff} of the low-pass filter for which the demodulated signal $\hat{x}(t)$ is identical to that of x(t)?

Question 2: [14%, Work-out question]

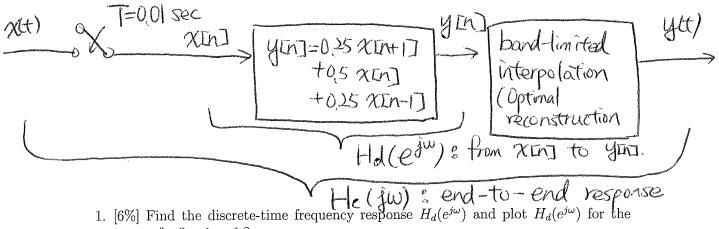
- 1. [1%] Let $x(t) = \cos(\pi t)$. What is the corresponding Nyquist frequency? Please use the unit Hertz for your answer.
- 2. [4%] If we sample x(t) with sampling period $T = \frac{1}{2}$ seconds, we can convert the continuous-time signal x(t) into a discrete-time signal x[n]. Plot x[n] for the range of $-2 \le n \le 2$. Plot only. There is no need to write down the actual expression.
- 3. [4%] If we use the impulse-train sampling with sampling period $T = \frac{1}{2}$ seconds, we can convert x(t) into another signal $x_p(t)$. Plot the Fourier transform $X_p(j\omega)$ of $x_p(t)$ for the range of $-5.5\pi \leq \omega \leq 5.5\pi$. Plot only. There is no need to write down the actual expression.
- 4. [5%] The discrete-time signal x[n] can be stored in a computer as an array. Suppose the hard drive is corrupted and the signal values outside the range $|n| \leq 1$ are erased and set to zero. That is, the new signal y[n] becomes

$$y[n] = \begin{cases} x[n] & \text{if } |n| \le 1\\ 0 & \text{otherwise} \end{cases}.$$
 (1)

Suppose we pass y[n] through the ideal reconstruction, also known as the bandlimited interpolation. Plot the reconstructed signal y(t) for the range of $-2 \le t \le 2$. Plot only. There is no need to write down the actual expression.

Hint: If you do not know x[n] in the previous question, you can assume that $x[n] = \mathcal{U}[n-1]$. You will get 4 points if your answer is correct.

Question 3: [14%, Work-out question] Consider the following discrete-time processing system for continuous-time signals.



- range of $-2\pi \leq \omega \leq 2\pi$.
- 2. [8%] Find the continuous-time frequency response $H_c(j\omega)$ plot $H_c(j\omega)$ for the range of $-200\pi < \omega < 200\pi$.

Hint: If you do not know the answer to this question, you can answer the following questions instead: (i) If the input is x(t) = 5, what is the output? (ii) What type of filter is the overall system? A low-pass filter? A high-pass filter? Or a band-pass filter? Use a single sentence to justify your answer. If both your answers are correct, you will still get 4 points.

Question 4: [20%, Work-out question] Consider a discrete-time signal x[n] with the expression of its Z-transform being $X(z) = \frac{1}{z+5+6z^{-1}}$. Suppose we also know that the discrete-time Fourier transform of x[n] exists. Answer the following questions.

- 1. [4%] Find out all the poles of X(z) and draw them in a z-plane.
- 2. [4%] What is the ROC of the Z-transform X(z)?
- 3. [4%] What is the value of $\sum_{n=-\infty}^{\infty} x[n]$. Hint: You may want to find the discrete-time Fourier transform $X(e^{j\omega})$ first.
- 4. [8%] Find the expression of x[n].

Question 5: [10%, Work-out question] Consider the following differential equation:

$$\frac{d^2}{dt^2}y(t) + 2\frac{d}{dt}y(t) + y(t) = \frac{d}{dt}x(t) + x(t)$$
(2)

Find out the output y(t) when the input is $x(t) = \cos(t) + \sin(\sqrt{3}t)$. Hint: If you do it right, there is no need to use partial fraction.

Question 6: [12%, Work-out question] Compute the continuous-time Fourier transform $H(j\omega)$ of the following signal. You can use a plot to represent your $H(j\omega)$. No need to write-down the actual expression:

$$h(t) = \frac{\sin(\frac{\pi t}{4})\sin(\frac{\pi t}{2})}{\pi^2 t} \tag{3}$$

Question 7: [15%, Multiple-choice question] Consider two signals $h_1(t) = \int_{s=-2t}^{2t} \cos(\pi s) ds$ and $h_2[n] = \max(\sin((n^2 + 0.5)\pi), 0)$

- 1. [1%] Is $h_1(t)$ periodic?
- 2. [1%] Is $h_2[n]$ periodic?
- 3. [1%] Is $h_1(t)$ even or odd or neither?
- 4. [1%] Is $h_2[n]$ even or odd or neither?
- 5. [1%] Is $h_1(t)$ of finite energy?
- 6. [1%] Is $h_2[n]$ of finite energy?

Suppose the above two signals are also the impulse responses of two LTI systems: System 1 and System 2, respectively.

- 1. [1.25%] Is System 1 causal?
- 2. [1.25%] Is System 2 causal?
- 3. [1.25%] Is System 1 stable?
- 4. [1.25%] Is System 2 stable?
- 5. [1.25%] Is System 1 invertible?
- 6. [1.25%] Is System 2 invertible?

Discrete-time Fourier series

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} \tag{1}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$
⁽²⁾

Continuous-time Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$
(3)

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt \tag{4}$$

Continuous-time Fourier transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
⁽⁵⁾

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
(6)

Discrete-time Fourier transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(j\omega) e^{j\omega n} d\omega$$
⁽⁷⁾

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(8)

Laplace transform

$$x(t) = \frac{1}{2\pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{j\omega t} d\omega$$
(9)

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
(10)

Z transform

$$x[n] = r^{n} \mathcal{F}^{-1}(X(re^{j\omega})) \tag{11}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
(12)

, and impulse unction of the the frequency (2). Also, from eigenfunction e goles, zeros, llustrate some f an important

(96.01)

esentation of ,7.2.01 noi

ransforms of ransforms of ransform pairs. And 5 follow 0.18, These, 2tions 10.5,4 airs 9 and 10 airs 9 and 10 arg properties ag properties

-5 oft fo ss: .5.01 slqmsx

Of .qedD

rabi E 10.1	
PROPERTIES OF THE z-TRANSFORM	

	< 0, then X(z)	Initial value incorrect If $x[n] = 0$ for $n < 0$, then $x[0] = \lim_{z \to \infty} X(z)$			10.5.9
Λ	$-z \frac{dz}{dz}$		nx[n]	Differentiation	10.5.8
At least the intersection of Λ and $ z > 1$	$\frac{1}{1-z^{-1}}X(z)$		$\sum_{k=-\infty}^{n} x[k]$	Accumulation	10.5.7
t least the t least the $ z > 0$	$X_{1}(z) X_{2}(z) X_{1}(z) X_{2}(z) (1 - z^{-1}) X(z)$		$x^*[n]$ $x_1[n] * x_2[n]$ x[n] - x[n - 1]	Conjugation Convolution First difference	10.5.6 10.5.7 10.5.7
R^{Uk} (i.e., the set of points z^{Uk} , where z is in R) R	$X(z^k)$	n = rk for some integer $rn \neq rk$	$x_{(k)}[n] = \begin{cases} x[r], \\ 0, \end{cases}$	Time expansion	10.5.5
Inverted K (i.e., $K = -$ une set of points z^{-1} , where z is in R)	$X(z^{-1})$		x[-n]	Time reversal	10.5.4
$z_0 R$ Scaled version of R (i.e., $ a R =$ the set of points $\{ a z\}$ for z in R)	$X(e^{-jrrr}z)$ $X(rac{z}{z_0})$ $X(a^{-1}z)$		$e^{j\omega_0 n} x[n]$ $z_0^n x[n]$ $a^n x[n]$	Scaling in the z-domain	10.5.3
At least the intersection or At and At R, except for the possible addition or deletion of the origin R	$aX_1(z) + bX_2(z)$ $z^{-n_0}X(z)$		$ax_1[n] + bx_2[n]$ $x[n - n_0]$	Linearity Time shifting	10.5.1 10.5.2
R ₁ R ₂	$X_1(z)$ $X_1(z)$ $X_2(z)$		$x[n] \\ x_1[n] \\ x_2[n]$		
R	z- Iransioriu V(z)	Signal		Property	Section
ROC	- Transform				TABLE 10.1

SLL

		TAINU
Signal	Transform	ROC
1. $\delta[n]$	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z, except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	z > lpha
6. $-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	z < lpha
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
8. $-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin\omega_0]z^{-1}}{1-[2\cos\omega_0]z^{-1}+z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n]u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r

TABLE 10.2SOME COMMON z-TRANSFORM PAIRS

10.7.1 Causality

A causal LTI system has an impulse response h[n] that is zero for n < 0, and therefore is right-sided. From Property 4 in Section 10.2 we then know that the ROC of H(z) is the exterior of a circle in the z-plane. For some systems, e.g., if $h[n] = \delta[n]$, so that H(z) = 1, the ROC can extend all the way in to and possibly include the origin. Also, in general, for a right-sided impulse response, the ROC may or may not include infinity. For example, if $h[n] = \delta[n + 1]$, then H(z) = z, which has a pole at infinity. However, as we saw in Property 8 in Section 10.2, for a causal system the power series

$$H(z) = \sum_{n=0}^{\infty} h[n] z^{-n}$$

does not include any positive powers of z. Consequently, the ROC includes infinity. Summarizing, we have the follow principle:

A discrete-time LTI system is causal if and only if the ROC of its system function is the exterior of a circle, including infinity.

TABLE 3.1 PROPERTIES	Section	Periodic Signal	Fourier Series Coefficients
Property	Section		a_k
		x(t) Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	b_k
		Ax(t) + By(t)	$Aa_k + Bb_k$
Linearity	3.5.1	(4 4)	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Time Shifting	3.5.2	$x(t - t_0) e^{jM\omega_0 t} x(t) = e^{jM(2\pi/T)t} x(t)$	a_{k-M}
Frequency Shifting	3.5.6	$x^*(t)$	a^*_{-k}
Conjugation	3.5.0 3.5.3	r(-t)	a_{-k}
Time Reversal	3.5.5 3.5.4	x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k
Time Scaling	5.5.4		Tab
Periodic Convolution		$\int_{T} x(\tau) y(t-\tau) d\tau$	Ta_kb_k
1 OILO BIO A		51	$\sum_{n=1}^{+\infty} a b$
a a def di settara	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Multiplication	01010		1
		dx(t)	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$
Differentiation		$\frac{dx(t)}{dt}$	
		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{ik\omega_0}\right)a_k = \left(\frac{1}{ik(2\pi/T)}\right)$
Integration		$x(t) dt$ periodic only if $a_0 = 0$	$(jk\omega_0)^{*}$ $(jk(2\pi/1))$
Mogration		J	$\int a_k = a_{-k}^*$
			$\Re e\{a_k\} = \Re e\{a_{-k}\}$
			$dm(a_1) = -dm(a_1)$
Conjugate Symmetry for	3.5.6	x(t) real	$\begin{cases} \Re \cdot \{a_k\} = \Re \cdot \{a_{-k}\} \\ \mathfrak{G}_{\mathcal{M}}\{a_k\} = -\mathfrak{G}_{\mathcal{M}}\{a_{-k}\} \\ a_k = a_{-k} \\ \mathfrak{F}_{\mathcal{A}}a_k = -\mathfrak{F}_{\mathcal{A}}a_{-k} \end{cases}$
Real Signals			$ a_k = a_{-k} $
Real Signals			
		(i) well and over	a_k real and even
Real and Even Signals	3.5.6	x(t) real and even	a_k purely imaginary and o
Real and Odd Signals	3.5.6	x(t) real and odd $f(t) = \sum_{x \in T} \left[x(t) - \sum_{x \in T} \left[x(t) \right] \right]$	$\Re = \{a_k\}$
Even-Odd Decomposition		$\begin{cases} x_e(t) = \delta \Psi \{ x(t) \} & [x(t) \text{ real}] \\ x_o(t) = \mathbb{O}d\{ x(t) \} & [x(t) \text{ real}] \end{cases}$	$j \mathcal{G}m\{a_k\}$
of Real Signals			
		Parseval's Relation for Periodic Signals	
		$\frac{1}{ \mathbf{x}(t) ^2}dt = \sum_{k=1}^{+\infty} a_k ^2$	
		$\frac{1}{T}\int_T x(t) ^2 dt = \sum_{k=-\infty}^{+\infty} a_k ^2$	

PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

three examples, we illustrate this. The last example in this section then demonstrates how properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal g(t) with a fundamental period of 4, shown in Figure 3.10 is could determine the Figure 3.10 is could determine the Fourier series representation of g(t) directly from the analysis control (2.30). Instead, when a function of g(t) directly from the analysis control (2.30). tion (3.39). Instead, we will use the relationship of g(t) to the symmetric periodic space wave r(t) in Example 3.5. Before to the wave x(t) in Example 3.5. Referring to that example, we see that, with T = 4 at $T_{1} = 1$ $T_1 = 1,$

g(t) = x(t-1) - 1/2.

Sec. 3.7 Properties of Discrete-Time Fourier Series

Thus, in general, *none* of the finite partial sums in eq. (3.52) yield the exact values of x(t), and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2	PROPERTIES	0F	DISCRETE-TIME FOURIER SERIES
		U 1	

$y[n] \int \text{fundamental frequency } \omega_0 = 2\pi/N \qquad b_k \int p_k$ Linearity $Ax[n] + By[n] \qquad Aa_k + \\ x[n - n_0] \qquad a_{k}e^{-jk\ell}$ Prequency Shifting $e^{jM(2\pi/N)n}x[n] \qquad a_{k-M}$ a_{k-M} Conjugation $x^*[n] \qquad x^*[n] \qquad a_{k-M}$ $x[-n] \qquad a_{k-k}$ Time Reversal $x[-n] \qquad x[-n] \qquad a_{k-k}$ Time Scaling $x_{(m)}[n] = \begin{cases} x[n/m], \text{ if } n \text{ is a multiple of } m \\ 0, \text{ if } n \text{ is not a multiple of } m \\ (periodic with period mN) \end{cases}$ Periodic Convolution $\sum_{r=\langle N \rangle} x[r]y[n - r] \qquad Na_kb_k$ Multiplication $x[n]y[n] \qquad \sum_{r=\langle N \rangle} a_i b_i \\ (1 - e^{-ikk}) \\ First Difference x[n] - x[n - 1] \qquad (1 - e^{-ikk}) \\ (1 - e^{-ikk}) \\$	r Series Coefficien
Time Shifting $x[n - n_0]$ $Ad_k + a_k e^{-jkt}$ Frequency Shifting $x[n - n_0]$ a_{km} Frequency Shifting $e^{jM(2\pi/N)n}x[n]$ a_{k-m} Conjugation $x^*[n]$ a_{k-m} Time Reversal $x[-n]$ a_{k-m} Time Scaling $x[n][n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \\ periodic Convolution\sum_{r=\langle N \rangle} x[r]y[n-r]Na_kb_kMultiplicationx[n]y[n]\sum_{l=\langle N \rangle} a_l bFirst Differencex[n] - x[n-1](1 - e^{-1})Running Sum\sum_{k=-\infty}^n x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}\begin{pmatrix} a_k = a \\ Re\{a_k\} \\ gm\{a_k \\ a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k = \\ < a_k$	riodic with riod N
Time Scaling $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \\ (\text{periodic with period } mN) \end{cases}$ $\frac{1}{m}a_k \begin{pmatrix} v_m \\ v_m \end{pmatrix}$ Periodic Convolution $\sum_{r=\langle N \rangle} x[r]y[n-r]$ Na_kb_k Multiplication $x[n]y[n]$ $\sum_{l=\langle N \rangle} a_lb$ First Difference $x[n] - x[n-1]$ $(1-e^{-t})$ Running Sum $\sum_{k=-\infty}^n x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}$ $\begin{pmatrix} a_k = a_k \\ gm(a_k) \\ gm(a_k) \\ gm(a_k) \\ a_k = a_k \end{pmatrix}$ Conjugate Symmetry for Real Signals $x[n]$ real $x[n]$ real $\begin{cases} a_k = a_k \\ gm(a_k) \\ gm(a_k) \\ a_k = a_k \end{pmatrix}$ Conjugate Symmetry for Real Signals $x[n]$ real and even $x[n]$ real and odd a_k real a 	
Multiplication $x[n]y[n]$ Xa_kb_k Multiplication $x[n]y[n]$ $\sum_{l=\langle N \rangle} a_l b$ First Difference $x[n] - x[n-1]$ $(1 - e^{-t})$ Running Sum $\sum_{k=-\infty}^{n} x[k] (finite valued and periodic only)\left(\frac{1}{(1 - e^{-t})}\right)Conjugate Symmetry forReal Signalsx[n] real\begin{cases} a_k = a \\ \theta Re\{a_k\} \\ \theta m \{a_k = a \\ \theta Re \{a_k = a \\ \beta m \{a_k$	ewed as periodic the period mN
Multiplication $x[n]y[n]$ $\sum_{l=\langle N \rangle} a_l b$ First Difference $x[n] - x[n-1]$ $(1 - e^{-t})$ Running Sum $\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}$ $\begin{pmatrix} \frac{1}{(1 - e^{-t})} \\ \frac{1}{(1 - e^{-t})} $	
First Difference $x[n] - x[n-1]$ $(1 - e^{-1})$ Running Sum $\sum_{k=-\infty}^{n} x[k] \begin{pmatrix} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{pmatrix}$ $\begin{pmatrix} (1 - e^{-1}) \\ (1 - e^{-1}) \end{pmatrix}$ Conjugate Symmetry for Real Signals $x[n]$ real $\begin{cases} a_k = a \\ \Re e_k a_k \\ \Im m_k a_k \\ a_k = \\ \forall a_k = 1 \end{cases}$ Real and Even Signals $x[n]$ real and even $x[n]$ real and odd a_k real a a_k purelySven Odd Decomposition of Real Signals $\begin{cases} x_e[n] = \& v\{x[n]\} \\ x_e[n] = \& v[x[n]] \\ x_e[n] \\ x_e[n] = \& v[x[n]] \\ x_e[n] \\ $	k-1
Conjugate Symmetry for $x[n]$ real Real Signals $x[n] \text{ real}$ $\begin{cases} a_k = a \\ \Im a_k = a \\ $	$k(2\pi/N)a_{l}$
Contained Even Signals $x[n]$ real and even a_k real aReal and Odd Signals $x[n]$ real and odd a_k purelyEven-Odd Decomposition $x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n]$ real]Of Real Signals $x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n]$ real]	$\left(\frac{1}{jk(2\pi/N)}\right)a_k$
Real and Odd Signals $x[n]$ real and even a_k real aReal and Odd Signals $x[n]$ real and odd a_k purelyEven-Odd Decomposition $x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n]$ real]of Real Signals $x_e[n] = \mathcal{E}v\{x[n]\}$ $[x[n]$ real]	$ \begin{aligned} &\stackrel{*}{=} & \Re e\{a_{-k}\} \\ &= & -\mathfrak{G}m\{a_{-k}\} \\ &a_{-k} \\ & - \not < a_{-k} \end{aligned} $
of Real Signals $\begin{cases} x_e[n] = \mathcal{E}v\{x[n]\} & [x[n] real] \end{cases} \qquad $	•
	g
Parseval's Relation for Periodic Signals	
$\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2 = \sum_{k=\langle N\rangle} a_k ^2$	

Chap. 3

f eqs. iodic h M = 1; = 4.

sequence in (3.106), the ns, we have

(3.107)

onclude from

if values ov o represent 221

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

ABLE 4	.1 PROPERTIES OF THE	i di dia siana	al	Fourier transform
ection	Property	Aperiodic sign		
		x(t)		X(jω) Y(jω)
		y(t)	-	()/
				$aX(j\omega) + bY(j\omega)$
.3.1	Linearry	$ax(t) + by(t)$ $x(t - t_0)$		$e^{-j\omega t_0}X(j\omega)$
.3.2	Time Shifting	$e^{j\omega_0 t} x(t)$		$X(j(\omega - \omega_0))$
.3.6	Frequency Shifting	$x^*(t)$		$X^*(-j\omega)$
.3.3	Conjugation	x(-t)		$X(-j\omega)$
4.3.5	Time Reversal			$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.3.5	Time and Frequency	x(at)		$ a ^{-1} \langle a \rangle$
	Scaling	$(\partial + \gamma(t))$		$X(j\omega)Y(j\omega)$
4.4	Convolution	x(t) * y(t)		$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$
4.5	Multiplication	x(t)y(t)		2π
4.5		d (i)		$j\omega X(j\omega)$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$		
		ct		$\frac{1}{i\omega}X(j\omega) + \pi X(0)\delta(\omega)$
4.3.4	Integration	$\int_{0}^{t} x(t) dt$		$\frac{1}{j\omega} X(j\omega) + m(z) + V(z)$
4.5.4	IntoBrance	J 00		$j\frac{d}{d\omega}X(j\omega)$
4.3.6	Differentiation in	tx(t)		$\int d\omega$
4.5.0	Frequency			$\int X(j\omega) = X^*(-j\omega)$
	-			$(\Re_{e}\{X(i\omega)\} = \Re_{e}\{X(-j\omega)\}$
				$\int dm[X(j\omega)] = -\mathfrak{I}m[X(-j\omega)]$
4.3.3	Conjugate Symmetry	x(t) real		$\begin{cases} 9m_{1}A(j\omega) \\ \frac{1}{2} $
4.3.3	for Real Signals			$ X(j\omega) = X(j\omega) $
	101 1000			$\begin{cases} X(j\omega) = X^{*}(-j\omega) \\ \Re_{\mathcal{C}}\{X(j\omega)\} = \Re_{\mathcal{C}}\{X(-j\omega)\} \\ g_{\mathcal{T}}\{X(j\omega)\} = -\mathfrak{I}_{\mathcal{T}}\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \ll X(j\omega) = - \ll X(-j\omega) \end{cases}$
	n for Dool and	x(t) real and even		$X(j\omega)$ real and even
4.3.3	Symmetry for Real and Even Signals	<i>x</i> (<i>v</i>) <i>x</i> = <i>m</i>		$X(j\omega)$ purely imaginary and ω
	Symmetry for Real and	x(t) real and odd		$X(j\omega)$ purely magnet
4.3.3	Odd Signals		13	$\Re_{\mathcal{R}} \{ X(j\omega) \}$
		$x_e(t) = \mathcal{E}v\{x(t)\}$	[x(t) real]	
4.3.3	Even-Odd Decompo-	$x_o(t) = \mathbb{O}d\{x(t)\}$	[x(t) real]	$j\mathfrak{g}_{m}\{X(j\omega)\}$
	sition for Real Sig-	•		
	nals			
	Darseval's Rel	ation for Aperiodic Si	gnals	
4.3.7	1 arso var 6 1001	$t = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 dz$	dω	
	$ x(t) ^2 d$	$t = \frac{1}{2\pi} \int_{-\infty}^{\infty} A(Jw) ^2$	~~~	

Sec. 4.6 Tables of Fourier Properties and of Basic Fourier Transform Pairs

FORM PAIRS

Chap. 4

调查

169(I

(Alter

0850

 $X_{\rm EV}$

hand -

165 52

ADUS-

Witter:

; we have considre summarized in which each prop-

ansform

important Fourier pply the tools of

transform

iω)

 $(r - \theta) d\theta$

 $(0)\delta(\omega)$

-*jω*) · $\Re e\{X(-j\omega)\}$ $-\mathcal{I}m\{X(-j\omega)\}$ - jω)| $(X(-j\omega))$ ven

iginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_0t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a _k
e ^{jw} u ⁱ	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, \ k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$)
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and x(t+T) = x(t)	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega-k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k \omega_0 T_1}{\pi} \right) = \frac{\sin k \omega_0 T_1}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
δ(<i>t</i>)	1	
<i>u</i> (<i>t</i>)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	
$e^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{n-1}e^{-at}u(t),$ Re{a} > 0	$\frac{1}{(a+j\omega)^n}$	·

329

er Transform Chap.s

nd $X_2(e^{j\omega})$. The periodic convolu-

Sec. 5.7 Duality

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
5.3.2	Linearity	x[n] $y[n]$ $ax[n] + by[n]$	$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π $aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.3 5.3.3 5.3.4	Time Shifting Frequency Shifting Conjugation	$x[n-n_0]$ $e^{j\omega_0 n} x[n]$ $x^*[n]$	$e^{-j\omega n_0} X(e^{j\omega})$ $X(e^{j(\omega-\omega_0)})$ $X^*(e^{-j\omega})$
5.3.6 5.3.7	Time Reversal Time Expansion	x[-n] $x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$	$X(e^{-j\omega})$ $X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]	$\frac{1}{2\pi}\int_{2\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$(1 - e^{-j\omega})X(e^{j\omega})$ $\frac{1}{1 - e^{-j\omega}}X(e^{j\omega})$
5.3.8	Differentiation in Frequency	nx[n]	$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re e\{X(e^{j\omega})\} = \Re e\{X(e^{-j\omega})\} \\ \Im m\{X(e^{j\omega})\} = -\Im m\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \ll X(e^{j\omega}) = -\ll X(e^{-j\omega}) \end{cases}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even
5.3.4	Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$x_e[n] = \&v\{x[n]\} [x[n] \text{ real}]$ $x_o[n] = Od\{x[n]\} [x[n] \text{ real}]$	$\Re e \{ X(e^{j\omega}) \}$ jIm $\{ X(e^{j\omega}) \}$
5.3.9	1.00	lation for Aperiodic Signals $a^{2} = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) ^{2} d\omega$	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_k of a periodic signal x[n] are themselves a periodic sequence, we can expand the sequence a_k in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_k are the values of (1/N)x[-n] (i.e., are proportional to the values of the original

nple 5.15.

ω

crete-time Fourier 1. In Table 5.2, we r transform pairs.

nmetry or duality to corresponding tion (5.8) for the rete-time Fourier addition, there is

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	<i>a_k</i>
ejwo ⁿ	$2\pi\sum_{l=-\infty}^{+\infty}\delta(\omega-\omega_0-2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, \ k = m, m \pm N, m \pm 2N, \dots \\ 0, \ \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
cos ω ₀ n	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi\sum_{l=-\infty}^{+\infty}\delta(\omega-2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \\ \text{and} \\ x[n+N] = x[n] \end{cases}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_{k} = \frac{\sin[(2\pi k/N)(N_{1} + \frac{1}{2})]}{N\sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_{k} = \frac{2N_{1} + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	_
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc} \left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W\\ 0, & W < \omega \le \pi\\ X(\omega) \text{ periodic with period } 2\pi \end{cases}$	-
δ[<i>n</i>]	1	
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_0}$	-
$(n+1)a^n u[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$	-
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	-

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

397