ECE 301, Final exam of the session of Prof. Chih-Chun Wang Friday 1pm-3pm , May 7, 2010, CL50 224.

1. Enter your name, student ID number, e-mail address, and signature in the space provided on this page, NOW!
2. This is a closed book exam.
3. This exam contains both multiple-choice and work-out questions. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
4. There are 21 pages in the exam booklet. Use the back of each page for rough work. The last pages are all the Tables. You may rip the last pages for easier reference. Do not use your own copy of the Tables. Using your own copy of Tables will be considered as cheating.
5. Neither calculators nor help sheets are allowed.

Name:

Student ID:

E-mail:

Signature:

Question 1: $[20 \%]$ No need to write down justifications for this question.

1. $[2 \%] x(t)=\frac{(\cos (2 \pi t))^{2}}{2+\sin (3 \pi t)}$. Is $x(t)$ periodic?
2. $[2 \%] y(t)=\frac{\sin (2000 \pi t)}{200 t}$. Is $y(t)$ an odd signal?
3. [3\%] Continue from the previous question. Is $y(t)$ of finite power? Is $y(t)$ of finite energy?
4. [3\%] Consider an LTI system with impulse response $h(t)$. If we feed this system with an input $x(t)=e^{j 2010 t} \mathcal{U}(t+4)+\frac{1}{t^{2}+2}$, the output is $y(t)=e^{j(2010 t-2010)} \mathcal{U}(t+$ $3)+\frac{1}{(t-1)^{2}+2}$. Write down the expression of the impulse response $h(t)$.
5. [3\%] Consider a system with the input/output relationship

$$
\begin{equation*}
y(t)=\int_{t^{2}-1}^{t^{2}} x(s) d s \tag{1}
\end{equation*}
$$

Is the system causal? Is the system linear? Is the system time-invariant?
6. $[2 \%] x[n]=e^{j n}$. Is $x[n]$ periodic?
7. $[2 \%] x[n]=\frac{\cos (1.5 \pi n)}{n^{4}+1}$ and $X\left(e^{j \omega}\right)$ is its Fourier transform. Is $X\left(e^{j \omega}\right)$ periodic?
8. [3\%] $x(t)=\sum_{k=-\infty}^{\infty} \frac{1}{k^{4}+1} \delta(t-0.3 \pi k)$ and $X(j \omega)$ is its Fourier transform. Is $x[n]$ periodic? Is $X(j \omega)$ periodic?

Question 2: [10\%]
Consider $x(t)=\sum_{k=0}^{\infty} \delta(t-1.5 k)$, and

$$
h(t)= \begin{cases}2 t+1 & \text { if }-0.5<t<0 \tag{2}\\ 1-2 t & \text { if } 0<t<0.5 \\ 0 & \text { otherwise }\end{cases}
$$

1. [2\%] Draw $x(t)$ for the range $-2<t<4$.
2. [2\%] Draw $h(t)$ for the range $-2<t<4$.
3. [6\%] Draw $y(t)=x(t) * h(t)$ for the range $-2<t<4$.

Question 3: [10\%] $x(t)=e^{-3 t} \mathcal{U}(t)$ and $h(t)=e^{-3 t} \mathcal{U}(t-1)$. Find the expression of $y(t)=x(t) * h(t)$.

Question 4: [15\%] Consider the following difference equation:

$$
\begin{equation*}
y[n]=y[n-1]-\frac{2}{9} y[n-2]+3 x[n]-\frac{5}{3} x[n-1] . \tag{3}
\end{equation*}
$$

1. [5\%] Find the frequency response $H\left(e^{j \omega}\right)$.
2. $[5 \%]$ When the input is $x[n]=\delta[n]$, find out the output $y[n]$. If you do not know the answer $H\left(e^{j \omega}\right)$ of the previous question, you can assume that

$$
H\left(e^{j \omega}\right)= \begin{cases}1 & \text { if }|\omega|<\frac{\pi}{2} \tag{4}\\ 0 & \text { if } \frac{\pi}{2} \leq|\omega|<\pi\end{cases}
$$

3. $[5 \%]$ When the input is $x[n]=e^{j n}$, find out the output $y[n]$. If you do not know the answers to the previous questions, you can assume that

$$
H\left(e^{j \omega}\right)= \begin{cases}1 & \text { if }|\omega|<\frac{\pi}{2} \tag{5}\\ 0 & \text { if } \frac{\pi}{2} \leq|\omega|<\pi\end{cases}
$$

Question 5: [15\%]
Prof. Wang wanted to transmit an AM-SSB signal. To that end, he wrote the following MATLAB code.

```
% Initialialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read two different .wav files
[x1, f_sample, N]=wavread('x1');
x1=x1';
[x2, f_sample, N]=wavread('x2');
x2=x2';
% Step 1: Make the signals band-limited.
W_M=2000*pi;
h=1/(pi*t).*(sin(W_M*t));
x1_new=ece301conv(x1, h);
x2_new=ece301conv(x2, h);
```

\% Step 2: Multiply x_new with a cosine wave.
x1_h=x1_new.*cos(5000*pi*t);
x2_h=x2_new. $* \cos (7000 * p i * t)$;
h1 $=1 /(\mathrm{pi} * \mathrm{t}) . *(\sin (5000 * \mathrm{pi} * \mathrm{t}))$;
h2 $=1 /(\mathrm{pi} * \mathrm{t}) . *(\sin (7000 * \mathrm{pi} * \mathrm{t}))$;
\% Step 3: Keep one of the side bands
x1_sb=x1_h-ece301conv(x1_h, h1);
x2_sb=x2_h-ece301conv(x2_h, h2);
\% Step 4: create the transmitted signal
$\mathrm{y}=\mathrm{x} 1$ _sb+x2_sb;
wavwrite(y', f_sample, N, 'y.wav');

1. [2\%] Is this system using the upper or the lower side band?
2. [6\%] The frequency spectrums of $\times 1$ and $\times 2$ are described in the following figures.
$x_{1}(j \omega)$

$$
x_{2}(j \omega)
$$

Plot the frequency spectrum of $x 1 _h$ and y.
Knowing that Prof. Wang used the above code to generate the "y.wav" file, a student tried to demodulate the output waveform "y.wav" by the following code.

```
% Initialialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read the .wav files
[y, f_sample, N]=wavread('y');
y=y';
% Create the low-pass filter.
h_M=1/(pi*t).*(sin(2000*pi*t));
% demodulate signal 1
y1=4*y.*\operatorname{cos}(5000*pi*t);
x1_hat=ece301conv(y1,h_M);
wavplay(x1_hat,f_sample)
% demodulate signal }
y2=4*y.*\operatorname{cos(7000*pi*t);}
x2_hat=ece301conv(y2,h_M);
wavplay(x2_hat,f_sample)
```

3. [3\%] Can the student demodulate $\times 2$ successfully without noise (also known as interference)? Use one or two sentences to briefly explain your answer.
4. [4\%] Can the student demodulate $\times 1$ successfully without noise (also known as interference)? Use one or two sentences to briefly explain your answer.

Question 6: [15\%]

1. [1\%] Given a signal $x(t)$, write down the equation how to convert $x(t)$ into its sample values $x_{d}[n]$ when the sampling period is 0.4 sec .

2 . $[2 \%]$ Suppose we know that $x_{d}[n]=\delta[n-2]$. We use linear interpolation to reconstruct the original signal, and denote the reconstructed output as $x_{1}(t)$. Plot $x_{1}(t)$ for the range $-1<t<2$.
3. [4\%] If we use a band-limited interpolation to reconstruct the original signal, and denote the reconstructed output as $x_{2}(t)$, write down the expression of $x_{2}(t)$ and plot $x_{2}(t)$ for the range $-1<t<2$.
4. [8\%] Consider the following digital signal processing system.

Suppose the $h[n]$ has its DTFT being

$$
H\left(e^{j \omega}\right)= \begin{cases}1 & \text { if }|\omega|<\frac{\pi}{2} \tag{6}\\ 0 & \text { if } \frac{\pi}{2} \leq|\omega|<\pi\end{cases}
$$

When the input $x(t)=\cos (\pi t)+\sin (0.5 \pi t)$, what is the output $y(t)$?

Question 7: [15\%]

1. $[3 \%] x[n]=\left(-\frac{1}{2}\right)^{n} \mathcal{U}[-n]$. Find the corresponding Z-transform $X(z)$ and plot the corresponding ROC, zeros, and poles.
2. $[2 \%] X(z)=2 z^{-2}+10 z^{3}$ and the corresponding ROC is the entire Z-plane except for $z=0$ and $z=\infty$. Find the corresponding $x[n]$.
3. $[5 \%]$ We know that $X(z)=\frac{1}{\left(1-\frac{2}{3} z^{-1}\right)\left(1-4 z^{-1}\right)}$ and the Fourier transform of the corresponding $x[n]$ exists. Find $x[n]$.
4. $[5 \%]$ Suppose $x[n]=2^{n} \mathcal{U}[-n-1]$ and $h[n]=(0.25)^{n} \mathcal{U}[-n-1]$. Let $y[n]=x[n] * h[n]$. Find the Z-transform $Y(z)$.

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X(j \omega) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10 . could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k}^{*} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=(N)} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Rumning Sum	$\sum_{k=-\infty}^{n} x[k]\binom{$ finite valued and periodic only }{ if $a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=\mathcal{O}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
Parseval's Relation for Periodic Signals$\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$		

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Parseval's Relation for Aperiodic Signals

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|X(j \omega)|^{2} d \omega
$$

FORM PAIRS

, we have consid. re summarized in which each prop. important Fourier upply the tools of
transform
; ω)
, $-\theta) d \theta$
$\cdot(0) \delta(\omega)$

$-j \omega)$

$\mathcal{P}_{\mathcal{e}}\{X(-j \omega)\}$
$-\mathscr{S}_{n}\{X(-j \omega)\}$
$-j \omega) \mid$
$\lceil X(-j \omega)$
ven
tginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0 j} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0}{ }^{\prime}}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$\begin{aligned} & a_{1}=1 \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=a_{-1}=\frac{1}{2} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\sin \omega_{0} t$	$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=-a_{-1}=\frac{1}{2 j} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$x(t)=1$	$2 \pi \delta(\omega)$	$a_{0}=1, \quad a_{k}=0, k \neq 0$ (this is the Fourier series representation for)
Periodic square wave $x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & T_{1}<\|t\| \leq \frac{T}{2}\end{cases}$ and $x(t+T)=x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right)$	$\frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)$	$a_{k}=\frac{1}{T}$ for all k
$x(t) \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \omega T_{1}}{\omega}$	-
$\frac{\sin W t}{\pi t}$	$X(j \omega)= \begin{cases}1, & \|\omega\|<W \\ 0, & \|\omega\|>W\end{cases}$	-
$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$e^{-a t} u(t), \mathcal{R} e\{a\}>0$	$\frac{1}{a+j \omega}$	-
$t e^{-a t} u(t), \mathcal{R e}\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\begin{aligned} & \frac{n^{n-1}}{(n-1)!} e^{-a t} u(t), \\ & \mathfrak{Q}\{a\}>0 \end{aligned}$	$\frac{1}{(a+j \omega)^{n}}$	-

table 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		$x[n]$	$X\left(e^{j \omega}\right)$ periodic with
		$y[n]$	$\left.Y\left(e^{j \omega}\right)\right\}$ period 2π
5.3.2	Linearity	$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$
5.3.3	Time Shifting	$x\left[n-n_{0}\right]$	$e^{-j \omega n_{0}} X\left(e^{j \omega}\right)$
5.3.3	Frequency Shifting	$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$
5.3.4	Conjugation	$x^{*}[n]$	$X^{*}\left(e^{-j \omega}\right)$
5.3.6	Time Reversal	$x[-n]$	$X\left(e^{-j \omega}\right)$
5.3.7	Time Expansion	$x_{(k)}[n]= \begin{cases}x[n / k], & \text { if } n=\text { multiple of } k \\ 0, & \text { if } n \neq \text { multiple of } k\end{cases}$	$X\left(e^{j k \omega}\right)$
5.4	Convolution	$x[n] * y[n]$	$X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)$
5.5	Multiplication	$x[n] y[n]$	$\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$
5.3.5	Differencing in Time	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) X\left(e^{j \omega}\right)$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j \omega}} X\left(e^{j \omega}\right)$
5.3.8	Differentiation in Frequency	$n \times[n]$	$\begin{aligned} & +\pi X\left(e^{j 0}\right) \sum_{k=-\infty}^{+\infty} \delta(\omega-2 \pi k) \\ & j \frac{d X\left(e^{j \omega}\right)}{d \omega} \end{aligned}$
5.3.4	Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right) \\ \operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}=\mathcal{R e}^{2}\left\{X\left(e^{-j \omega}\right)\right\} \\ \mathfrak{I}_{m 3}\left\{X\left(e^{j \omega}\right)\right\}=-\mathfrak{I} m\left\{X\left(e^{-j \omega}\right)\right\} \\ \left\|X\left(e^{j \omega}\right)\right\|=\left\|X\left(e^{-j \omega}\right)\right\| \\ \Varangle X\left(e^{j \omega}\right)=-\Varangle X\left(e^{-j \omega}\right) \end{array}\right.$
5.3.4	Symmetry for Real, Even Signals	$x[n]$ real an even	$X\left(e^{j \omega}\right)$ real and even .
5.3.4	Symmetry for Real, Odd Signals	$x[n]$ real and odd	$X\left(e^{j \omega}\right)$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$\begin{array}{ll} x_{e}[n]=\mathcal{E v}\{x[n]\} & {[x[n] \text { real }]} \\ x_{o}[n]=\operatorname{dd}\{x[n]\} & {[x[n] \text { real }]} \end{array}$	
5.3.9	Parseval's Re $\sum_{n=-\infty}^{+\infty}\|x[n]\|$	ation for Aperiodic Signals $=\frac{1}{2 \pi} \int_{2 \pi}\left\|X\left(e^{j \omega}\right)\right\|^{2} d \omega$	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_{k} of a periodic signal $x[n]$ are themselves a periodic sequence, we can expand the sequence a_{k} in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_{k} are the values of $(1 / N) x[-n]$ (i.e., are proportional to the values of the original

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_{k} e^{j k(2 n / N) n}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	a_{k}
$e^{j \omega_{0} n}$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta\left(\omega-\omega_{0}-2 \pi l\right)$	(a) $\begin{aligned} & \omega_{0}=\frac{2 \pi m}{N} \\ & a_{k}= \begin{cases}1, & k=m, m \pm N, m \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_{0} n$	$\pi \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)+\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} \omega_{0} & =\frac{2 \pi m}{N} \\ a_{k} & = \begin{cases}\frac{1}{2}, & k= \pm m, \pm m \pm N, \pm m \pm 2 N \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_{0} n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)-\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} & \omega_{0}\end{aligned} \quad=\frac{2 \pi r}{N} \quad \begin{aligned} \frac{1}{2 j}, & k=r, r \pm N, r \pm 2 N, \ldots,\end{aligned}, \begin{aligned}-\frac{1}{2 j}, & k=-r ;-r \pm N,-r \pm 2 N \\ 0, & \text { otherwise }\end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$x[n]=1$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta(\omega-2 \pi l)$	$a_{k}= \begin{cases}1, & k=0, \pm N, \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases}$
Periodic square wave $x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & N_{1}<\|n\| \leq N / 2\end{cases}$ and $x[n+N]=x[n]$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$\begin{aligned} & a_{k}=\frac{\sin \left[(2 \pi k / N)\left(N_{1}+\frac{1}{2}\right)\right]}{N \sin [2 \pi k / 2 N]}, k \neq 0, \pm N, \pm 2 N, \\ & a_{k}=\frac{2 N_{1}+1}{N}, k=0, \pm N, \pm 2 N, \ldots \end{aligned}$
$\sum_{k=-\infty}^{+\infty} \delta[n-k N]$	$\frac{2 \pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$a_{k}=\frac{1}{N}$ for all k
$a^{n} u[n], \quad\|a\|<1$	$\frac{1}{1-a e^{-j \omega}}$	-
$x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & \|n\|>N_{1}\end{cases}$	$\frac{\sin \left[\omega\left(N_{1}+\frac{1}{2}\right)\right]}{\sin (\omega / 2)}$	-
$\begin{aligned} & \frac{\sin W n}{\pi n}=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right) \\ & 0<W<\pi \end{aligned}$	$\begin{aligned} & X(\omega)= \begin{cases}1, & 0 \leq\|\omega\| \leq W \\ 0, & W<\|\omega\| \leq \pi\end{cases} \\ & X(\omega) \text { periodic with period } 2 \pi \end{aligned}$	-
$\delta[n]$	1	-
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{+\infty} \pi \delta(\omega-2 \pi k)$	$-$
$\delta\left[n-n_{0}\right]$	$e^{-j \omega \mu_{0}}$	
$(n+1) a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$	
$\frac{(n+r-1)!}{n!(r-1)!} a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{r}}$	

 'solez 'solod a asuodsar uopounfuәธ! xə [duos әut woIf 'OSIV '(Souənbarf จчt 10 uoupu aspudu! pue
(9601)
'LSOI Uo

amadord 8 t
01 pue 6 S.Ie
$t \mathrm{SOI}$ suons
כsay.L $81^{\circ} 0$
nolloy S pue
radord aqt
sired unofst
jo sumogsues
col गdurex
*ay 10 ss

TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal	Transform	ROC
1. $\delta[n]$	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
4. $\delta[n-m]$	z^{-m}	$\begin{aligned} & \text { All } z \text {, except } \\ & 0 \text { (if } m>0 \text {) or } \\ & \infty(\text { if } m<0 \text {) } \end{aligned}$
5. $\alpha^{n} u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>\|\alpha\|$
6. $-\alpha^{n} u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|<\|\alpha\|$
7. $n \alpha^{n} u[n]$	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|>\|\alpha\|$
8. $-n \alpha^{n} u[-n-1]$	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^{2}}$	$\|z\|<\|\alpha\|$
9. $\left[\cos \omega_{0} n\right] u[n]$	$\frac{1-\left[\cos \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
10. $\left[\sin \omega_{0} n\right] u[n]$	$\frac{\left[\sin \omega_{0}\right] z^{-1}}{1-\left[2 \cos \omega_{0}\right] z^{-1}+z^{-2}}$	$\|z\|>1$
11. $\left[r^{n} \cos \omega_{0} n\right] u[n]$	$\frac{1-\left[r \cos \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
12. $\left[r^{n} \sin \omega_{0} n\right] u[n]$	$\frac{\left[r \sin \omega_{0}\right] z^{-1}}{1-\left[2 r \cos \omega_{0}\right] z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

10.7.1 Causality

A causal LTI system has an impulse response $h[n]$ that is zero for $n<0$, and therefore is right-sided. From Property 4 in Section 10.2 we then know that the ROC of $H(z)$ is the exterior of a circle in the z-plane. For some systems, e.g., if $h[n]=\delta[n]$, so that $H(z)=1$. the ROC can extend all the way in to and possibly include the origin. Also, in general, for a right-sided impulse response, the ROC may or may not include infinity. For example if $h[n]=\delta[n+1]$, then $H(z)=z$, which has a pole at infinity. However, as we say if Property 8 in Section 10.2, for a causal system the power series

$$
H(z)=\sum_{n=0}^{\infty} h[n] z^{-n}
$$

does not include any positive powers of z. Consequently, the ROC includes infinity. Sump marizing, we have the follow principle:

A discrete-time LTI system is causal if and only if the ROC of its system function is the exterior of a circle, including infinity.

