ECE 301, Final exam of the session of Prof. Chih-Chun Wang
Friday 1pm—3pm , May 7, 2010, CL50 224.
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. This is a closed book exam.
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Question 1: [20%)] No need to write down justifications for this question.

1.

COS( 4T 2 . .
2%] z(t) = % Is z(t) periodic?

[2%)] y(t) = 200 g 4 (¢) an odd signal?

200t

[3%] Continue from the previous question. Is y(t) of finite power? Is y(¢) of finite
energy?

[3%] Consider an LTI system with impulse response h(t). If we feed this system
with an input z(t) = e/ (t + 4) 4+ 715, the output is y(t) = eI 010—2010074 (¢ 4-
3) + m Write down the expression of the impulse response h(t).

[3%] Consider a system with the input/output relationship

Is the system causal? Is the system linear? Is the system time-invariant?
2%)] x[n] = ™. Ts x[n| periodic?

[2%)] z[n] = %ﬂm) and X (e?) is its Fourier transform. Is X (e/*) periodic?

3%] x(t) = >0 k++15(t — 0.37k) and X (jw) is its Fourier transform. Is z[n]
periodic? Is X (jw) periodic?












Question 2: [10%]
Consider z(t) = >~ ,0(t — 1.5k), and

2t+1 if -05<t<0
h(t)y=<1-2t if0<t<05

0 otherwise

1. [2%] Draw z(t) for the range —2 < t < 4.
2. [2%] Draw h(t) for the range —2 < t < 4.

3. [6%] Draw y(t) = z(t) = h(t) for the range —2 <t < 4.












Question 3: [10%)] z(t) = e 3U(t) and h(t) = e U(t — 1). Find the expression of
y(t) = x(t) = h(t).












Question 4: [15%] Consider the following difference equation:

yln) = yln — 1] — Syl — 2]+ 3eln] — Jaln 1] 3)

1. [5%] Find the frequency response H(e’*).

2. [5%] When the input is xz[n] = d[n], find out the output y[n|. If you do not know
the answer H(e’*) of the previous question, you can assume that

H(ejw):{l if jw| < 2 n

0 ifZ<|w<m

3. [5%] When the input is z[n] = €, find out the output y[n]. If you do not know the
answers to the previous questions, you can assume that

(o) = {1 if jw| < 2 )

0 ifZ<|w<m












Question 5: [15%)
Prof. Wang wanted to transmit an AM-SSB signal. To that end, he wrote the following
MATLAB code.

% Initialialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read two different .wav files
[x1, f_sample, N]=wavread(’x1’);
x1=x1’;
[x2, f_sample, N]=wavread(’x2’);
x2=x2’;

% Step 1: Make the signals band-limited.
W_M=2000*pi;

h=1/(pi*t) .*(sin(W_M*t));
x1_new=ece301conv(xl, h);
x2_new=ece301lconv(x2, h);

% Step 2: Multiply x_new with a cosine wave.
x1_h=x1_new.*cos(5000%pi*t) ;
x2_h=x2_new.*cos (7000*pi*t);

h1=1/(pi*t) .*(sin(5000*pi*t));

h2=1/(pi*t) .*(sin(7000*pi*t));

% Step 3: Keep one of the side bands
x1_sb=x1_h-ece301conv(x1_h, hil);
x2_sb=x2_h-ece301conv(x2_h, h2);

% Step 4: create the transmitted signal
y=x1_sb+x2_sb;
wavwrite(y’, f_sample, N, ’y.wav’);

1. [2%)] Is this system using the upper or the lower side band?

2. [6%] The frequency spectrums of x1 and x2 are described in the following figures.






;}:\, 3 { V:"} Vv(} ><:3 ( j’;;m )

PSRRI

Plot the frequency spectrum of x1_h and y.

Knowing that Prof. Wang used the above code to generate the “y.wav” file, a student
tried to demodulate the output waveform “y.wav” by the following code.

% Initialialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read the .wav files
ly, f_sample, Nl=wavread(’y’);

y=y’;

% Create the low-pass filter.
h_M=1/(pi*t) .*(sin(2000*pi*t));

% demodulate signal 1
y1=4%y.*cos (5000*pixt) ;
x1_hat=ece301conv(yl,h_M);

wavplay(x1_hat,f_sample)

% demodulate signal 2
y2=4%y . *cos (7000*pi*t);
x2_hat=ece301conv(y2,h_M);

wavplay(x2_hat,f_sample)

3. [3%] Can the student demodulate x2 successfully without noise (also known as in-
terference)? Use one or two sentences to briefly explain your answer.

4. [4%] Can the student demodulate x1 successfully without noise (also known as in-
terference)? Use one or two sentences to briefly explain your answer.













Question 6: [15%]

1. [1%] Given a signal z(t), write down the equation how to convert z(t) into its sample
values z4[n] when the sampling period is 0.4 sec.

2. [2%)] Suppose we know that z4[n] = d[n — 2]. We use linear interpolation to recon-
struct the original signal, and denote the reconstructed output as x1(t). Plot zy(t)
for the range —1 < ¢ < 2.

3. [4%)] If we use a band-limited interpolation to reconstruct the original signal, and
denote the reconstructed output as T2(t), write down the expression of Zo(t) and
plot z2(t) for the range —1 < ¢ < 2.

4. [8%)] Consider the following digital signal processing system.

el
f,wmq;
R

- NEnT }WW,

S o 85 s 5

IUEVIIRIUE——————

Suppose the h[n] has its DTFT being

gy J1 i e <Z
Hie )_{0 if 2 <fwl<nm ©)

When the input z(t) = cos(nt) + Sin(0.57ft), what is the output y(¢)?

;













Question 7: [15%)

1. [3%] z[n] = (—3)" U[—n]. Find the corresponding Z-transform X(z) and plot the

corresponding ROC, zeros, and poles.

2. [2%] X(2) = 2272 4+ 1023 and the corresponding ROC is the entire Z-plane except
for z =0 and z = co. Find the corresponding x[n].

3. [5%)] We know that X (z) = a 22_1)1(1742_1) and the Fourier transform of the corre-
3

sponding x[n| exists. Find x[n].

4. [5%] Suppose z[n] = 2"U[—n—1] and hin] = (0.25)"U[—n—1]. Let y[n| = z[n|*xh[n].
Find the Z-transform Y'(z).












Discrete-time Fourier series

x[n] _ Z akejk(Qﬂ/N)n
k—(N)

1 .
ap = — Z x[n]efjk(Zﬂ/N)n

N
n=(N)
Continuous-time Fourier series
oo
ZE(t) _ Z akejk(QTr/T)t
k=—00

1 )
ag = —/m(t)efk@”/T)tdt
T Jr

Continuous-time Fourier transform
1 > . jwt
z(t) = — X(jw)e’ dw
2 J_ o

X(jw) = /00 x(t)e ¥t dt

oo
Discrete-time Fourier transform

1

x[n] = o, X (jw)e* dw
X(e*) = Z x[n]ewn

Laplace transform
x(t) = ie"t /00 X (0o + jw)e’ dw
2 oo
X(s) = / x(t)e *dt

7 transform

(10)

(11)

(12)
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TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES
S ———
Property Section Periodic Signal Fourier Series Coefficients
x(f)) Periodic with period T and ay
¥(t) fundamental frequency wo = 2T by
Linearity 351 Ax(®) + By(®) Aa; + Bb;
Time Shifting 352 x(t — to) ape ol = age ey
Frequency Shifting eiMant x(1) = /M (27/T) x(2) Q-
Conjugation 356 x*(t) ay
Time Reversal 3.5.3 x(—1t) a-
Time Scaling 3.54 x(at), >0 (periodic with period T/a) ax
Periodic Convolution J x(T)y(t — Td7 Taxby
T
4o
Multiplication 3.5.5 x(0)y® Z aiby-
J= -
. e dx(t . 2
Differentiation d(t) koot = JkTW a
t it 1\ d .
Integration J x(H) dt(ﬁr{1 © .va ved fm _l_ ar = _l___
o periodic only if a0 = 0) Jkawo jkQ2mIT)
ap = aik
Refar} = Relai}
Conjugate Symmetry for 356 x(¢) real Imiar} = —dmia_y)
Real Signals laxl = lai ~
Yay = —Xa-
Real and Even Signals 35.6 x(t) real and even ay real and even ;
Real and Odd Signals 35.6 x(7) real and odd ay, purely imaginary
Even-Odd Decomposition {xe(t) = &v{x(n)} [x(r) real] Refayt
of Real Signals x,(1) = Od{x(0} [x(p) real] jImiat
Pparseval’s Relation for Periodic Signals
1 I
3| opar = >l
three examples, we illustrate this. The last example in this section then demons
d to characterize the signal in great detail.

propetties of a signal can be use

Example 3.6

Consider the signal g(z) with a fundamental period of

. could determine the Fourier s
tion (3.39). Instead,
wave x(f) in Example
T[ = 1,

3.5. Referring to that example,

g®) = x(t -1~ 1/2.

eries representation of g(2) direct! :
we will use the relationship of g(r) to the symumetric P&

4, shown in Figure
1y from the ana

we see that, with
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Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(¢),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property

Periodic Signal

Fourier Series Coefficients

Time Shifting
‘Frequency Shifting
Conjugation

Time Reversal

Time Scaling

eriodic Convolution

x[n] } Periodic with period N and
y[n] | fundamental frequency wo = 27/N

Ax[n] + By[n]

x[n = ny]
ejM(Z-n'/N)nx[n]

x"[n]
x[~n]
x[n/m], if n is a multiple of m
x(m) [n] = . . .
0, if n is not a multiple of m
(periodic with period mN)

> xlrlyln—r]

r=(N)

x[n]yln]

x[n] = x[n - 1]

Z x[K] (ﬁmte valued and periodic only)
e ifay =0

x[n] real

x[n] real and even
x[n] real and odd

{ xe[n] = &v{x[n])} [x[n] real]
x,[n] = Od{x[n]} [x[n]real]

Parseval’s Relation for Periodic Signals

¥ S P = S faf

n=(N) k=(N)

ay ] Periodic with
period N

a e~ ik@miNm
af- M
A
a—i

1  (viewed as periodic
m (with period mN )

Nakb,;

Z aibe;

1=(N)
(1 —- e—jk(ZvrIN))ak

1
((1 — e~ JkETIN)y )a"
ay = aik
Refa,} = Refa_y}
Imlay} = —Imla_}
la] = la-|
Lay = —Ya_;
ay, real and even
a, purely imaginary and odd
Gefa,}
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4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have consi
ered some of the important properties of the Fourier transform. These are summarized
Table 4.1, in which we have also indicated the section of this chapter in which each pro
erty has been discussed. ~~

In Table 4.2, we have assembled a list of many of the basic and important Four
transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section Property Aperiodic signal Fourier transform k
x() X(jw)
¥ Y(jw)
43.1 Linearity ax(®) + by(® aX(jw) + b¥( jo)
432 Time Shifting x(t — 1) e i X(jw)
43.6 Frequency Shifting el x(t) X(jl@ — wo))
433 Conjugation x'(®) X (—jw)
43.5 Time Reversal x(—1) X(—jw)
435 Time and Frequency x(at) —1— (B—)
. la"\ a
Scaling
4.4 Convolution x(8) * y(t) X( jwﬂjq))’
45 Multiplication Xy 2—‘1—,[“&0 B)Y(j(w — O)d6
434 Differentiation in Time g;x(t) joX(jo)
t
434 Integration J x(r)dt J—,l(;X( jw) + 7X(0)86(w)
43.6 Differentiation in tx(t) j d—d—X (jow)
Frequency @
X(jw) = X"(~jo)
Re{X(jw)} = RelX(
433 Conjugate Symmetry x(t) real ImiX(jw)} = ~ 9
for Real Signals lX(jw)l _ lX(—jw)l ‘
LX(jw) = — X
433 Symmetry for Realand  x(f) real and even X(jw) real and even
Even Signals .
433 Symmetry for Realand  x(?) real and odd X(jw) purely imagipary
Odd Signals

%) = Svix(®}  [x() reall Re{X(jw)}

433 Even-Odd Decompo- (f) = Od{x(®) () real] )

gition for Real Sig-

437 Parseval’s Relation for Aperiodic Signals
+oo 1 +eo
200 o Y
[ixopar = 5| KGRl
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y We thVe COHSiCL

Fourier series coefficients

T€ summarizeg in Signal Fourier transform (if periodic)
Whlch eaCh T b o
prop. Z ageltn 27 Z ad(w — kwg) a,
. F= o P
tmportant Fourje,
1pPly the tools of gJwut 2m8(w — wy) a; = 1
a; = 0, otherwise
P 8(w ~ wo) + B(w + 1= =y
“transform coswot (o(@ ~ o) (@ +wo)l a, = 0, otherwise
h\
!
i m a = —a., = 5
t —[6(w — wg) — §(w + 2
Sinwy j[ (w — wp) (@ + wp)] a = 0, otherwise
;.)_ ........ a=1 a=0 k=0
@ x(n =1 27 6(w) this is the Fourier series representation for
any choice of T > 0
Periodic square wave ]
p=|b M=<D &= 2 sin kwoT T kooTi\ _ sin kwoT ‘
W0 <=1 S 2T g g,y @l sinc( 20 '): it LL
“— k T T km
and k=-e
x(t+T) = x(2)
)y —@)de
it 2m <5 27k 1
"Zwa(: - nT) 7,;“,8(‘0 - —T—) & = = forall k
(0)d(w) 1, <, 2sinwT),
x(®) e —
0, l>T, )

. sin Wt . L |of<w :
@) e X(jo) = [O :w: >W - :
Re{X (- jow)} » \
—Im{X(— jw)} 80 1 _

- jo)| '
X(—jw) u(®) - b jiw + 7 8(w) —
ven
\ginary and odd 8(t ~ o) e -
1
—at p—
e “u(t), Re{a} > 0 it e
te % u(t), Refa} > 0 —1— — t
’ (a+ jw) "
o _“<,l:1l)y e~ u(t), _1__ .
Refa} > 0 (a+ jo)
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seriodic convoly-

nple 5.15,

crete-time Fourier
1. In Table 5.2, we.
T transform pairs

nmetry or duali

rete-time Fo
addition, the:

Sec.5.7  Duality 3an
TABLE 5.1 PROPERTIES OF THE DiSCRETE-TIME FOURIER TRANSFORM
Section  Property Aperiodic Signal Fourier Transform
x[n] X(ef‘")} periodic with
yin] Y(e/)]| period 27
5.3.2 Linearity ax{n] + by[n] aX(e’?) + bY (/)
53.3 Time Shifting xn — no) el x (o)
53.3 Frequency Shifting e/*" x(n] X(e/w-w0)y
534 Conjugation x'[n] X'(e™ ™)
5.3.6 Time Reversal x[—n] X(e )
. . _ [ x[n/k}, if n = multiple of & ™
53.7 Time Expansion Xwlnl = {0’ if n » multiple of k X(e*)
54 Convolution x[n] * y[n] X(e/)y(e™)
5.5 Multiplication x{nlyln] % J X(e®)Y(e")do
2
5.3.5 Differencing in Time x[n] = x[n—1] (1 — e )X (')
. - 1 o
53.5 Accumulation kzw x[k] =% X(e*)
400
+aX(e™) > 8(w — 2mk) ‘
538 Differentiation in Frequency  nx{n] 'd};(:)jw) !
X(e) = X (&™) |
Re{X(e/)} = Re{X(e )}
534 Conjugate Symmetry for x[n] real Im{X(e/*)} = —Im{X(e =)}
Real Slgnals IX(ef‘”)] = IX(e-jw)l
LX(e/*) = —4X (e )
534 Symmetry for Real, Even x[n] real an even X(e’*) real and even
Signals T
534 Symmetry for Real, Odd x[n] real and odd X(e/*) purely imaginary and f
Signals odd
534 Even-odd Decomposition x.[n] = &v{x[n]} [x[n] real] Re{X(e™)} 5
of Real Signals x,[n] = Od{x[n]} [x[n] real] jIm{X(e*)}
539 Parseval’s Relation for Aperiodic Signals

n=—o

400 1 )
S bl = o [P

a duality relationship between the discrete-time Fourier transform and the continuous-time

Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence a; in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-
quence a;, are the values of (1/N)x[—n] (i.e., are proportional to the values of the original




TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal

Fourier Transform

Fourier Series Coefficients (if periodic)

Z akejk(ZHIN)n
k=(N)

+
2ar Z akS(w - 2_;Vr_k)

k= —co

ag

eJoott

ro
> 8w —wg — 27l)

=—w

(a) =N
, k=mmxNmx2N,
0, otherwise
irrational = The signal is aperiodic

coswohn

™ Zm: {8(w — wp — 2ml) + 8(w + wy — 20}

[

- 2w
1
5
0, otherwise

irrational > The signal is aperiodic

k=xmzm=zN tm+2N.

sinwon

4o
% S (8w — wo — 27D — 8(w + wp = 27D}
I —co

2arr

N
s k=rrENrEoN.
—9p k= -norEN-rrap,
0, otherwise
irrational > The signal is aperiodic

x{n] = 1

oo
21 > 8w —2ml)

I=—o

1, k=0 %N £2N,...

0, otherwise

Periodic square wave
1, ]nl =N 1

x[n] =
0, N, <|n =NI2

and
x{n+ N] = x[n]

oo
21 Z apd (w - ?)

= —c

sin{Qak/NYN| + )]
N sin[27k/2N}

2N+ 1
N

, k#0,£N, 22N, .

, k=0,ZN, £2N,...

atuln], o <1

1~ aeJ®

L, la =N

x[n]=
(] 0, |n|> Ny

sinfw(N) + 5)]
sin{w/2)

smH’/n — W sinc (Wn)

ah T T

O<W<m

, 0=<loj=W

0, W<l ==
X(w) periodic with period 27

X(w) =

6[n}

1

uln]

4o
1—:%7“—) + Z 78w — 2mk)
k=—o

8[n — ngl

g“l‘“’"O

(n+ Da'uln], la <1

-
(I — ae~jo)?

(n+r—1!

20— D! laf <1

atuln),

i
(1 — ae—Jo)y
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TABLE 10.1

Section Property

105.1 Linearity
10.5.2 Time shifting
10.5.3 Scaling in the z-domain
10.5.4 Time reversal
10.5.5 Time expansion
10.5.6 Conjugation
10.5.7 Convolution
10.5.7 First difference
10.5.7 Accumulation
10.5.8 Differentiation

in the z-domain
10.5.9

PROPERTIES OF THE Z-TRANSFORM

Signal

z-Transform

x[n] X(@2)

x1[n} X,(2)

x{n) X(2)

axi[n] + bxanl aX(2) + bX2(2)

x[n — no) 77X (2)

el x[n] X(e ¥02)

zax[n] X A,Iov

ax[n] X(a'2)

x[—n] Xz

xwinl = * Mmg M M HM for some integer 7 X5

x*[n] X"(z)

x[n) = %201 X1(2)X2(2)

xm]— xin— 1 1 - z7HX(@)

< n !

> e XLK] 1= NLNA@

nxfnl -2z &MANNV
Tnitial Value Theorem

If xn] = Oforn < 0, then

%[0 = lim X(z)

ROC

At least the intersection of Ri and R

R, except for the possible addition or
deletion of the origin

R

No%

Scaled version of R (i.e., lalR = the
set of points {alz} for z in R)

Inverted R (i.e., R~ = the set of
points z~!, where z is in R)

RY* (ie., the set of points 7V, where
z1is in R)

R

At least the intersection of Ry and Ry

At least the intersection of R and
|zl >0

At least the intersection of R and
lZ>1

7%
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TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal Transform ROC
1. 8[n] 1 Allz
1

2. uln] T |2t > 1

3. —u[-n—1] ?127—1 |z} < 1

4, 8[n — m] " All z, except
0 (if m>0)or
o (if m < Q)

5. aulr] L 1l > lof

1 —az™!

1

6 —aul=n—1] = le] <l
n g aZ7l
7. nauln) m 2| > ||
-1
az
C—no"ul—-n — - <
8. —na"u[-n—-1] 0 a1y 2] < al
1 = [coswg]z™!
9. [cos wonluln] [~ Feosale | 727 |z} > 1
. [sinwplz™'

. >
10. [sinwon]u{n] T Deosmolz T+ 22 2] >1
11. [r" cos wonluln] L= [reos wole”! lz| > r

' 0 1 - [2rcoswyjz! + 12772 z

: -1
12. [r" sin won]uln] [rsinwolz |zl > r

1= [2rcoswglz! + r2z2

10.7.1 Causality

A causal LTI system has an impulse response k[n] that is zero for n < 0, and théref()m
right-sided. From Property 4 in Section 10.2 we then know that the ROC of H(z) is
exterior of a circle in the z-plane. For some systems, e.g., if h[n] = 8[n], so thatH Z
the ROC can extend all the way in to and possibly include the origin. Also, in gen
a right-sided impulse response, the ROC may or may not include infinity. For ex
if hfn] = 8[n + 1], then H(z) = z, which has a pole at infinity. However, as
Property 8 in Section 10.2, for a causal system the power series

H(z) = Z hin)z™"

does not include any positive powers of z. Consequently, the ROC lncludes mﬁ
marizing, we have the follow principle:

A discrete-time LTI system is causal if and only if the ROC of its syster
the exterior of a circle, including infinity.
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