Question 1: [25%] Let $x[n] = \cos(\frac{8\pi}{3}n) + \cos(\frac{7\pi}{3}n)$.

- 1. [4%] Find out the period of x[n].
- 2. [5%] Find out the Fourier series a_k of x[n].
- 3. [3%] Plot the Fourier series a_k .
- 4. [6%] Consider an LTI system with $h[n] = 3^{-n}\mathcal{U}[n-1]$. Find out the Fourier transformation $H(e^{j\omega})$ of h[n].
- 5. [7%] y[n] is the output of the above LTI system with the input being x[n]. Find out

1.
$$N_1 = \frac{2\pi}{87/3} = \frac{2}{4}$$
 $N_2 = \frac{2\pi}{17/3} = \frac{2}{4}$
 $N_3 = \frac{2\pi}{17/3} = \frac{2}{4}$
 $N_4 = \frac{2\pi}{17/3} = \frac{2}{4}$
 $N_5 = \frac{2\pi}{17/3} = \frac{2\pi}{17/3}$
 $N_7 = \frac{2\pi}{17/3} = \frac{2\pi}{17/3}$
 N_7

W

JENJ- b1 x CFEN+ b2 CFEN+ b4 CFEN+ bx b1 = a1 x H(e + 1 x 2/2 H(Rojur) = S honge jun M_ (SX II A The be for = 2 3-h - jwn 12 to - 2 to - 1 ()= ()= () Cut Co direct Carry Jan 20) D'state W- O JW ap O ste do to Will be

transform values within the range $(0, 2\pi)$ are Question 2: [30%] Consider a discrete time aperiodic signal x[n]. Suppose its Fourier

$$X(e^{j\omega}) = \begin{cases} 1 & \text{if } 0 < \omega < \frac{\pi}{2} \\ 0 & \text{if } \frac{\pi}{2} < \omega < \pi \\ 1 & \text{if } \pi < \omega < \frac{3\pi}{2} \\ 2 & \text{if } \frac{3\pi}{2} < \omega < 2\pi \end{cases}$$
(1)

- 1. [6%] Plot $X(e^{j\omega})$ for ω ranging from $-\pi$ to 3π .
- [6%] Suppose $y[n] = x[n] \cdot (-1)^n$. Plot the Fourier transform $Y(e^{j\omega})$ of y[n] for ω ranging from $-\pi$ to 3π .
- 3. [6%] What is the value of y[0]?
- [6%] z[n] = x[n] * y[n]. Plot $Z(e^{j\omega})$ for ω ranging from $-\pi$ to 3π .

[6%] Find out z[n]. \Rightarrow のこ With エエ period A 五五 27

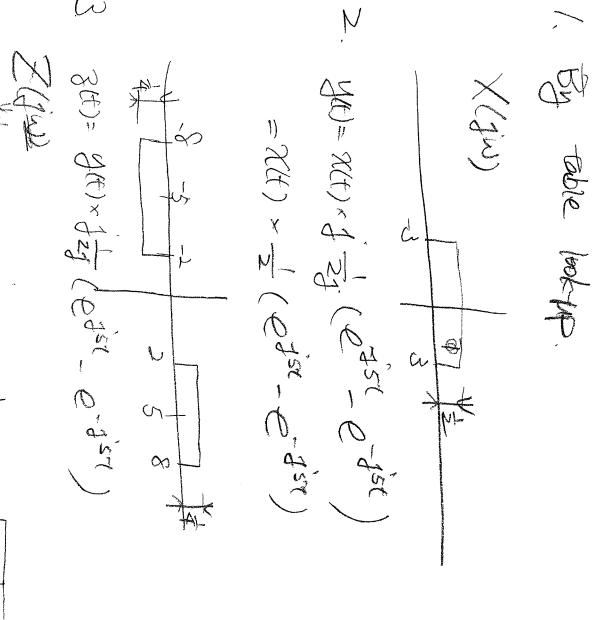
 ω T(Jub) -1007 - 2007 = H - RINJ, E-JEN \times (Jw) (-1)=SA. $X(e^{\frac{1}{2}m})e^{\frac{1}{2}m^{2}}d\omega = \frac{1}{2\pi}x(2\pi)$ 71 d r B タヤ lesk by Z が大

CLIS (一[四圣 CVJS M 22十二 11 Z(Codio) e two dw x who) e two 24 -from

=X(edw) x Tredw

Question 3: [25%] Consider the following differential equation.

$$12y(t) - 7\frac{d}{dt}y(t) + \frac{d^2}{dt^2}y(t) = 12x(t) - \frac{d}{dt}x(t).$$
 (2)


- 1. [8%] Find out the frequency response $H(j\omega)$.
- 2. [7%] Find out the impulse response h(t).
- 3. [10%] When the input is $x(t) = 3^{-t}\mathcal{U}(t)$, find out the output y(t). Hint: you need to use Table 4.2 for this problem.

This question is designed incorrectly. Full credit for surfacely.

graded. needs to be

Question 4: [20%] Consider a continuous time signal $x(t) = \frac{\sin(3t)}{2\pi t}$

- [5%] Plot its Fourier transform $X(j\omega)$ for ω ranging from -9 to 9
- [5%] Suppose $y(t) = x(t)j\sin(5t)$. Plot its Fourier transform $Y(j\omega)$ for ω ranging from -9 to 9.
- ယ [5%] Suppose $z(t)=y(t)j\sin(5t)$. Plot its Fourier transform $Z(j\omega)$ for ω ranging from -9 to 9.
- 4. $x(t)j\sin(5t)$. You are asked to describe how to reconstruct x(t) from y(t). Please the cutoff frequency used in your system. do not just divide y(t) by $j\sin(5t)$. In your answer, you should specify the value of to design a very basic AM system. Hint: the output of your base station is y(t) =[5%] Based on the above answers, describe how to use $\sin(\omega_c t)$ instead of $\cos(\omega_c t)$

with outoff from=3

H