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Question 1: [30%)] No need to write down justifications.
1. [10%)] Let

() = cos(%t) 4 s1n<§) (1)

Is x(t) periodic? (If Yes, what is the period?) Is z(t) an odd signal? Is z(t) of
infinite or finite power? Is z(¢) of infinite or finite energy?

2. [10%)] Let

o0

y[n] = Z cos(0.5mn)d[n — 2k] (2)

k=—o0

Is y[n] periodic? (If Yes, what is the period?) Is y[n] an even signal? Is y[n| of
infinite or finite power? Is y[n] of infinite or finite energy?

3. [6%)] Plot y[n] for the range between n = —2 to 6.
4. [5%] Let

Plot z[n| for the range between n = —2 to 6.






Question 2: [35%]

1.

2.

[3%] Use one or two sentences to describe what is a time-invariant system.
[3%] Use one or two sentences to describe what is a linear system.

[8%] Consider a discrete-time linear time-invariant system with impulse response
hin] = $(U[n + 3] — U[n — 1]). Let z[n] = 27"U[n]. Find out the corresponding
output y[n| of the given system.

[6%)] Is the above system causal? Is it memoryless? Is it invertible? Is it stable?
(No need to write down justifications for this subquestion.)

[5%] The above system is also termed a moving-average system. Why is it called
a moving-average system? (You should specify exactly which input values z[k] are
averaged to generate y[n|.)

[5%] Consider one linear time-invariant system with impulse response h;[n]. Explain
how to check whether hi[n] is invertible. Hint: Your answer should involve the
corresponding discrete-time Fourier transform H;(e/).

[5%] Suppose the system is invertible and the impulse response of the inverse system
is ho[n]. Prove/show that hi[n] and hs[n| must satisfy

hi[n] % ho[n] = d[n| (4)

by considering the serial concatenation of the two systems.









Question 3: [35%)]

1. [10%] Consider the following periodic continuous-time signal of period 3: Within
the range —1,5 to 1.5, we have

wlt) = {5(t+1)+6(t—1) if —15<t<15 )

w(t —3) otherwise
Find the Fourier series coefficients a; of w(t). Hint: Use direct computation.

2. [8%)] What is the Fourier transform of w(t). If you do not know the answer to the
above question, you can express W (jw) in terms of a; and you will get 5 points.

3. [10%] Consider a differential equation system:
d
2-y(t) = =3y(t) + 4z (t). (6)

Find out the impulse response h(t).

4. [7%] With an input x(t) = e ?'U(t), find out the output y(t).









Question 4: [30%)]

1. [7%] A commercial AM radio system uses bandwidth from 520kHz to 1610kHz. If
the content of each radio station is a band-limited signal with X (jw) = 0 if |w| > 10
kHz. How many radio stations can share the 520kHz to 1610kHz frequency if the
AM-DSB modulation is used? How many radio stations can share the same amount
of frequency if the AM-SSB modulation (using the upper side-band) is used.

2. [10%] Prof. Wang wanted to transmit an AM signal. To that end, he wrote the
following MATLAB code.

% Initialialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read the .wav files
[x, f_sample, N]=wavread(’x’);
x=x";

% Step 1: Make the signal band-limited.
W_M=7777;

h=1/(pi*t) .*x(sin(W_Mxt));
x_new=ece301lconv(x, h);

% Step 2: Multiply x_new with a sine wave instead of a cosine wave.
y=x_new.*sin(4000*pix*t) ;

wavwrite(y’, f_sample, N, ’y.wav’);

What is the largest value of W_M that still ensures successful demodulation of x_new
from the modulated signal y?

3. [8%] Knowing that Prof. Wang used the above code to generate the “y.wav” file, a
student tried to demodulate the output waveform “y.wav” by writing the following
code.

% Initialialization

duration=8;

f_sample=44100;
t=(((0-4)*f_sample+0.5) : ((duration-4)*f_sample-0.5))/f_sample;

% Read the .wav files



[y, f_sample, N]=wavread(’y’);
Y=y’

W_C=4000*pi;
h=1/(pi*t) .*(sin(0.5*%W_C*t));

y_new=2%y.*cos (W_Cxt) ;
xhat=ece301conv(y_new,h) ;

wavplay(xhat,f_sample)

This student made two mistakes in his/her system (assuming that the largest W_M
is used) and the resulting xhat is thus different from the original signal x_new. How
to correct the two mistakes in the above code? (Each mistake worths 4 pts)

. [6%] If the student did not correct the mistakes, what type of incorrect output would
he/she hear after the “wavplay” command. (You should comment on whether it is
a high-pitch sound or a low-frequency sound, or any other specific type of sound.)

If you do not know how to write the MATLAB code, write down the system dia-
grams (flow charts, etc.) of AM and the corresponding synchronous demodulation.
Carefully marks all the cutoff frequencies of the LPF, the carrier frequency, and
the multiplication factor. You will get 65% of the overall credit if your answers are
correct.

If you do not know how to write down the system diagram, explain in words how will
you modulate a AM signal and how would you demodulate the information-bearing
signal. You will get 50% of the overall credit if your answers are correct.









Question 5: [34%)]

1. [11%)] Suppose x(t) = cos(3nt). Write down the expression of normal discrete time
sampling z4[n] when the sampling period is 7' = 0.57 Plot z4[n| for n = —1 to 5.

2. [6%)] Suppose linear interpolation is used to reconstruct Z(t) from the sampled values,
plot the reconstructed signal #(t) between t = —0.5 to t = 2.5. (If you do not know
the answer to the previous question about sampling, you can assume a normal
discrete sampling is used with

z4[n] = 271" for all integer n, (7)

and continue solving this question. You will still get full credit if your answer is
correct.)

3. [6%] Is the system under-sampled or over-sampled?

4. [12%] What is the discrete-time Fourier transform of z4[n|? Plot X4(e’*) for the
range —7m < w < . Hint: Approach 1: You can solve the following sub-questions in
sequence. Step 1: Consider impulse train sampling x,(t) = z(t) > .~ 6(t — 0.5k),
what is the continuous time Fourier transform X,(jw) of z,(t)? Step 2: How to
derive the DTFT X,(e’*) from X,(jw). Solving each step will give you partial
credits (6% for each step). Approach 2: Direct computation.






Question 6: [36%] Compute the following transforms or inverse transforms.

1. [12%)] Suppose a discrete-time Fourier transform is
X (/) =1+ 3e 73 4 37710,
Find its inverse Fourier transform z[n).
2. [12%] Suppose a discrete-time Fourier transform is
2w
Y () = JW‘

Find its inverse Fourier transform y[n].

3. [12%] Suppose
z(t) = =2U(t - 2)

find its Laplace transform expression and plot the Region of Convergence (ROC).






Fourier Series Representation of Periodic Signals Chap. 3

TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property Section Periodic Signal Fourier Series Cocfficients

x(t) | Periodic with period T and a;
¥(t) j fundamental frequency wo = 27/T

Ax(t) + By(t) Aa; + Bb,
Time Shifting 5. x(t — tp) aje Ken = q g kT,
Frequency Shifting @Mt x(1) = gM@ITY x(1) a; u
Conjugation x*(t) a,
Time Reversal x(=1) a_;
Time Scaling x{at), a > 0 (periodic with period T/a) a;

Periodic Convolution J x(T)y(t — 7)dT Tayb,
T

Multiplication 5. x(0)y(®) > abi
f=—«
dx(t)
dt

Inte rz;tion J I x(t)dt (finite valued and ! a, = gl
& - periodic only if @ = 0) Tk % =\ kG J*

. L. . L, 2T
Differentiation Jkooa, = jk—T—ak

a, =a.,
Refa} = Refa_,}
Conjugate Symmetry for 5. x(2) real Imfa} = —9Imfa_,}
Real Signals la| = |a-]
fa, = —da_;
Real and Even Signals x(t) real and even ay real and even
Real and Odd Signals x(t) real and odd a; purely imaginary and odd
Even-Odd Decomposition x.(t) = &{x(®)} [x() real] Re{a,}
of Real Signals {x,,(t) = 0d{x(0} [x(r)real] j9nsia}

Parseval’s Relation for Periodic Signals

7 |, opar = >

=—c0

three examples, we illustrate this. The last example in this section then demonstrates how -
properties of a signal can be used to characterize the signal in great detail.

Example 3.6

- Consider the signal g(¢) with a fundamental period of 4, shown in Figure 3.10. We
+ could determine the Fourier series representation of g(1) directly from the analysis equa-
- tion (3.39). Instead, we will use the relationship of g(#) to the symmetric periodic square

~ wave x(t) in Example 3.5. Referring to that example, we see that, with T = 4 and
T| = 1,

g = x(t—1)—1/2. (3.69)




Sec. 3.7 Properties of Discrete-Time Fourier Series 221

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of x(¢),
and convergence issues, such as those considered in Section 3.4, arise as we consider the
problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time
Fourier series. This can be readily seen by comparing the discrete-time Fourier series
properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property

Periodic Signal

Fourier Series Coefficients

Time Shifting
‘Frequency Shifting
Conjugation

Time Reversal

Time Scaling

eriodic Convolution

x[n] } Periodic with period N and
y[n] | fundamental frequency wo = 27/N

Ax[n] + By[n]

x[n = ny]
ejM(Z-n'/N)nx[n]

x"[n]
x[~n]
x[n/m], if n is a multiple of m
x(m) [n] = . . .
0, if n is not a multiple of m
(periodic with period mN)

> xlrlyln—r]

r=(N)

x[n]yln]

x[n] = x[n - 1]

Z x[K] (ﬁmte valued and periodic only)
e ifay =0

x[n] real

x[n] real and even
x[n] real and odd

{ xe[n] = &v{x[n])} [x[n] real]
x,[n] = Od{x[n]} [x[n]real]

Parseval’s Relation for Periodic Signals

¥ S P = S faf

n=(N) k=(N)

ay ] Periodic with
period N

a e~ ik@miNm
af- M
A
a—i

1  (viewed as periodic
m (with period mN )

Nakb,;

Z aibe;

1=(N)
(1 —- e—jk(ZvrIN))ak

1
((1 — e~ JkETIN)y )a"
ay = aik
Refa,} = Refa_y}
Imlay} = —Imla_}
la] = la-|
Lay = —Ya_;
ay, real and even
a, purely imaginary and odd
Gefa,}
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The Continuous-Time Fourier Transform

PROPERTIES OF THE FOURIER TRANSFORM

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have ¢
ered some of the important properties of the Fourier transform. These
Table 4.1, in which we have also indicated the section of this ch
erty has been discussed.

In Table 4.2, we have assembled a list of many of the basic
transform pairs. We will encounter many of these repeatedly as we apply the tog]g of

Aperiodic signal

Fourier transform

TABLE 4.1
Section Property
4.3.1 Linearity
432 Time Shifting
43.6 Frequency Shifting
433 Conjugation
435 Time Reversal
435 Time and Frequency
Scaling
4.4 Convolution
4.5 Multiplication
434 Differentiation in Time
434 Integration
4.3.6 Differentiation in
Frequency
433 Conjugate Symmetry
for Real Signals
433 Symmetry for Real and
Even Signals
433 Symmetry for Real and
- Odd Signals
433 Even-Odd Decompo-
sition for Real Sig-

Parseval’s Relation for Aperiodic Signals

+® 1 [+
[ wopas = 3 [ o

x(t)
$30]

ax(t) + by(t)
X(f - t())
&/ x (1)
X0

x(~1)

x(at)

x(t) * y(1)
XDy ()

%x(z‘)
f l x(t)dt

tx(t)

x(t) real

x(t) real and even
x(¢) real and odd

xe(t) = &{x(1)} [x(r) real]
x,(8) = Od{x()} [x(t) real]

Chap,

Onsig.

dre summarizeq in
apter in which each Prop

and tmportant Fouriey

“—\

X(jw)
Y(jw)

aX(jw) + bY(jw)
¢ o X(jw)
X(j(w - wy)
X'(— jw)

X(— jw)

f}'ﬂx(%“‘)

X(jw)Y(jw)
~ f XGOY((w — §)d6

joX(jo)

L x(w) + 7X(0)5(w)
j(l)

v
J;;X(jw)

X(jw) = X*(~ jw)

Re{X(jw)} = RefX (- jw)}
Im{X(jw)} = —Im{X(— jw)}

X(jw)l = 1X(~ jo)|
LX(jw) = —4X(—jw)
X(jw) real and even

X(jw) purely imaginary and odd

Ref{X(jw)}
JImX(jo)}
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‘FORM PAIRS TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Tables of Fourier Properties and of Basic Fourier Transform Pairs
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y We thVe COHSiCL

Fourier series coefficients

T€ summarizeg in Signal Fourier transform (if periodic)
Whlch eaCh T b o
prop. Z ageltn 27 Z ad(w — kwg) a,
. F= o P
tmportant Fourje,
1pPly the tools of gJwut 2m8(w — wy) a; = 1
a; = 0, otherwise
P 8(w ~ wo) + B(w + 1= =y
“transform coswot (o(@ ~ o) (@ +wo)l a, = 0, otherwise
h\
!
i m a = —a., = 5
t —[6(w — wg) — §(w + 2
Sinwy j[ (w — wp) (@ + wp)] a = 0, otherwise
;.)_ ........ a=1 a=0 k=0
@ x(n =1 27 6(w) this is the Fourier series representation for
any choice of T > 0
Periodic square wave ]
p=|b M=<D &= 2 sin kwoT T kooTi\ _ sin kwoT ‘
W0 <=1 S 2T g g,y @l sinc( 20 '): it LL
“— k T T km
and k=-e
x(t+T) = x(2)
)y —@)de
it 2m <5 27k 1
"Zwa(: - nT) 7,;“,8(‘0 - —T—) & = = forall k
(0)d(w) 1, <, 2sinwT),
x(®) e —
0, l>T, )

. sin Wt . L |of<w :
@) e X(jo) = [O :w: >W - :
Re{X (- jow)} » \
—Im{X(— jw)} 80 1 _

- jo)| '
X(—jw) u(®) - b jiw + 7 8(w) —
ven
\ginary and odd 8(t ~ o) e -
1
—at p—
e “u(t), Re{a} > 0 it e
te % u(t), Refa} > 0 —1— — t
’ (a+ jw) "
o _“<,l:1l)y e~ u(t), _1__ .
Refa} > 0 (a+ jo)
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TABLE 5.1 PROPERTIES OF THE DiSCRETE-TIME FOURIER TRANSFORM
Section  Property Aperiodic Signal Fourier Transform
x[n] X(ef‘")} periodic with
yin] Y(e/)]| period 27
5.3.2 Linearity ax{n] + by[n] aX(e’?) + bY (/)
53.3 Time Shifting xn — no) el x (o)
53.3 Frequency Shifting e/*" x(n] X(e/w-w0)y
534 Conjugation x'[n] X'(e™ ™)
5.3.6 Time Reversal x[—n] X(e )
. . _ [ x[n/k}, if n = multiple of & ™
53.7 Time Expansion Xwlnl = {0’ if n » multiple of k X(e*)
54 Convolution x[n] * y[n] X(e/)y(e™)
5.5 Multiplication x{nlyln] % J X(e®)Y(e")do
2
5.3.5 Differencing in Time x[n] = x[n—1] (1 — e )X (')
. - 1 o
53.5 Accumulation kzw x[k] =% X(e*)
400
+aX(e™) > 8(w — 2mk) ‘
538 Differentiation in Frequency  nx{n] 'd};(:)jw) !
X(e) = X (&™) |
Re{X(e/)} = Re{X(e )}
534 Conjugate Symmetry for x[n] real Im{X(e/*)} = —Im{X(e =)}
Real Slgnals IX(ef‘”)] = IX(e-jw)l
LX(e/*) = —4X (e )
534 Symmetry for Real, Even x[n] real an even X(e’*) real and even
Signals T
534 Symmetry for Real, Odd x[n] real and odd X(e/*) purely imaginary and f
Signals odd
534 Even-odd Decomposition x.[n] = &v{x[n]} [x[n] real] Re{X(e™)} 5
of Real Signals x,[n] = Od{x[n]} [x[n] real] jIm{X(e*)}
539 Parseval’s Relation for Aperiodic Signals

n=—o

400 1 )
S bl = o [P

a duality relationship between the discrete-time Fourier transform and the continuous-time

Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a; of a periodic signal x[n] are themselves a periodic
sequence, we can expand the sequence a; in a Fourier series. The duality property for
discrete-time Fourier series implies that the Fourier series coefficients for the periodic se-
quence a;, are the values of (1/N)x[—n] (i.e., are proportional to the values of the original




TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal Fourier Transform Fourier Series Coefficients (if periodic)
&3 Yo b
N el 2 ST s <m - ":/'A> y
P - !
() wy = %,;{]{“,
L Iok=mmiNmzx2IN .
T 2> 8w - wy - 2rl) " . k= omom m
I 0. otherwise
(b) F¥ irational 2 The signal iy aperiodic
() wy = %’/’-’—’
Vo L, . -
Cos wyn 7> (8w wy - 2ml) F 8wt wy 2wl ap = 2ok tmorm N W
T 0, otherwise
(b) 52 irrational 3 The signal is aperiodic
@) wy = %
Ve 2—'/ k=rr+xNr*2N
sinwgn 7]7 > {Slw ~ wy - 27l - 8(w + wq — 2ml)} ap =4 - 5L k= —r~r+N —r+2nN
Z 5 ; VTrR2N,
17w
0, otherwise
(b) ‘213 irrational 3 The signal is aperiodic
S k=0 EN, 22N,
x(n] =1 2m S 8w - 2ml) ag -
it 0. otherwise
Periodic square wave
=" Inl = N, , sin[2mkINYN, + 1)) kO EN. 22N
X = il 27k ag = TN e Tl S , N, 22N, ...
§ 0, Ny <|nl = NP2 2 > uké(w - f—é) * N sin[2mk/2N]
2 .
and a= N o
xln + N} = x[n] N
e 27 &= 2wk !
;mS[n—kN] Wk;mﬁ(w— T) ay 5 for all £
a"uln], o <1 ! _ —
' 1~ ae~Jjw
Lo =W sinfw (V) + 1]
x(n]= —_— 2 —_
0. |n| >N, sin(w/2)
. I 0sol =W
¥ = ¥ sinc (¥2) X(w) = ol
0, W<of=n _
D<W<m X(w) periodic with period 27
8{n) 1 —
I =
uln] =7 + k_z_ 7w — 27k) —
8[n ~ ng] e~ ien —
(n+ Da"uln), ol <1 $ —
(1 — geJw)?
(n+r-1n , 1
AT A < —_— —
it =y @l el <1 (1= ge Jay

392




Discrete-time Fourier series

lL‘[’I’L] _ Z akejk(Qw/N)n

k=(N)

1 .
U = 5 Z [n]e IkEm/N)n
n=(N)
Continuous-time Fourier series

l‘(t)z Z akejk(%r/T)t

k=—00

1 .
ap = —/.:E(t)e_]k(%/T)tdt
T Jr
Continuous-time Fourier transform
x(t) = L /00 X (jw)e dw
21 J_ o
X(jw) :/ x(t)e ¥t dt

Discrete-time Fourier transform

1 :
xn] = o ) X (jw)e*" dw
X(e) = Z x[n]e "

Continuous-time Laplace transform

1 OO .
x(t) = %e"t/ X (o + jw)e’ dw

X(s) = /_ " ae

o0

(10)
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