Question 1: [Multiple Choices, 20%] Consider a LTI system with impulse response h(t) =
Ut) — U(t — 2). Consider an input signal z(t) = cos(2wt) + sin(nt) and denote the
corresponding output as y(t). For convenience, we let z.(t) = cos(2nt) and z4(t) = sin(nt)
and X (w), X.(w), Xs(w), H(w), and Y (w) are the corresponding the Fourier transforms
of z(t), z.(t), zs(t), h(t), and y(t) respectively.

1. [Outcome 4, 4%] What is the value of X (m)? (a) 0, (b) 0.5, (c) 0.500.
2. [Outcome 4, 4%] What is the value of X,(m)? (a) 0, (b) —0.57, (c) —0.5007.
3. [Outcomes 2 and 4, 4%] What is the value of H(0)? (a) 0, (b) 1, (c) 2.
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. [Outcomes 2, 4, and 5, 4%] What is the value of Y(1)? (a) 0, (b) 1, (c) 2.

. [Outcomes 4, and 5, 4%] How would you name the system? (a) a low-pass filter, (b)
a high-pass filter.
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Question 2: [Short-Answer, 15%] Please provide a short, one-sentence explanation of the
following terms / theorems.

1. [Outcomes 1, 4, and 5, 3%] Fourier series / transformations convert the original
signal z(t) (or z[n]) to another representation with different “basis signals.” What
type of signals are the “basis signals” of the Fourier series / transformation repre-
sentation?

2. [Outcome 4, 3%)] Suppose X (w) is the Fourier transformation of z(t). What is the
physical meaning of X (0)? What is the physical meaning of X (100)?

3. [Outcome 4, 3%] What is the physical meaning of the Parseval’s theorem / relation-
ship?

4. [Outcomes 4, and 5, 3%)| An important feature of converting signals to their Fourier
representations is that the response y(t) = h{t) * z(¢) of a LTI system becomes
Y(w) = H(w)X (w). What is the physical meaning of the last equation?

5. [Outcomes 1, 4, and 5, 3%] A LTI system of impulse response h(t) is invertible if
and only if its corresponding Fourier transform H{w) # 0 for all w. Why is it so?
Hint: Y(w) = H(w)X (w).
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Question 3: [Work-out Question 25%) Consider a discrete signal z[n] of period 5 such
that within one period, the values of the signal is

(0 ifn=0
1 ifn=1
zn]=<2 ifn=2.
0 ifn=3
0 ifn=4
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1. [Outcome 4, 7%] Find out the Fourier series representation of z[n|. Note that this
question is asking a complete representation so you not only have to specify the
coefficient oy but also have to specify the corresponding frequency.

2. [Outcome 4, 5%] Find out the value of 3 5_, cv.

3. [Outcome 4, 6%)] Find out the value of S3_,|c|>. Note: o may be a complex
number and | - | is the corresponding absolute value of a complex number.

4. [Outcomes 4, and 5, 7%] Let y[n] = z[n] — z[n — 1]. Find out the Fourier series
representation of y[n]. Again, one needs to specify both the coefficients 3 and the
corresponding frequency.
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Question 4: [Work-out Question 20+5%] Consider a serial concatenation of two LTI
systems as follows.

ONP. ha(t) 4

where hy(t) = e™3U(t) and hy(t) = e SU(2).

1. [Outcomes 2, 3, 4, and 5, 10%)] Let h(t) = hq(t) * ho(t) denote the impulse response
of this serially concatenated system. Find H(w).

2. [Outcomes 4, and 5, 10%] Suppose z(t) = €/?, and we know that the output y(t) =
Ae??19)  Find out the gain factor A and the phase shift §. Hint: Let C = Ae? and
rewrite y(t) = Ce’?. Now consider input-output relationship in the Fourier domain
and find the value of C.

3. [Bonus: Outcomes 4, and 5, 5%] Find A(¢). Hint: One can obtain the result from
H(w) or one can directly compute the convglution.
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Question 5: [Work-out Question 25%] Consider a discrete moving average system of
window size 3: h[n] = 1/3(8[n] + d[n — 1} + d[n — 2]).

1. [Outcomes 4, and 5, 10%] Find out the Fourier transform H(w) of h[n]. Note: we
are considering the discrete Fourier transform.

2. [Outcome 4, 10%] z[n] = cos(3n + 7/2). Find out the Fourier transform X (w) of

3. [Outcomes 2, 3, 4, and 5, 5%] What is the output y[n] and its Fourier transform
Y (w)?
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