Question 1: [Multiple Choices, 20%] Consider a LTI system with impulse response h(t) = $\mathcal{U}(t) - \mathcal{U}(t-2)$. Consider an input signal $x(t) = \cos(2\pi t) + \sin(\pi t)$ and denote the corresponding output as y(t). For convenience, we let $x_c(t) = \cos(2\pi t)$ and $x_s(t) = \sin(\pi t)$ and $X(\omega)$, $X_c(\omega)$, $X_s(\omega)$, $H(\omega)$, and $Y(\omega)$ are the corresponding the Fourier transforms of x(t), $x_c(t)$, $x_s(t)$, h(t), and y(t) respectively.

- 1. [Outcome 4, 4%] What is the value of $X_c(\pi)$? (a) 0, (b) 0.5, (c) 0.5 ∞ .
- 2. [Outcome 4, 4%] What is the value of $X_s(\pi)$? (a) 0, (b) -0.5j, (c) $-0.5\infty j$.
- 3. [Outcomes 2 and 4, 4%] What is the value of H(0)? (a) 0, (b) 1, (c) 2.
- 4. [Outcomes 2, 4, and 5, 4%] What is the value of Y(1)? (a) 0, (b) 1, (c) 2.
- 5. [Outcomes 4, and 5, 4%] How would you name the system? (a) a low-pass filter, (b) a high-pass filter.
- (a)
- 2.(c)
- 3 (c)
- 4. (a) 5. (a)

Question 2: [Short-Answer, 15%] Please provide a short, one-sentence explanation of the following terms / theorems.

- 1. [Outcomes 1, 4, and 5, 3%] Fourier series / transformations convert the original signal x(t) (or x[n]) to another representation with different "basis signals." What type of signals are the "basis signals" of the Fourier series / transformation representation?
- 2. [Outcome 4, 3%] Suppose $X(\omega)$ is the Fourier transformation of x(t). What is the physical meaning of X(0)? What is the physical meaning of X(100)?
- 3. [Outcome 4, 3%] What is the physical meaning of the Parseval's theorem / relationship?
- 4. [Outcomes 4, and 5, 3%] An important feature of converting signals to their Fourier representations is that the response y(t) = h(t) * x(t) of a LTI system becomes $Y(\omega) = H(\omega)X(\omega)$. What is the physical meaning of the last equation?
- 5. [Outcomes 1, 4, and 5, 3%] A LTI system of impulse response h(t) is invertible if and only if its corresponding Fourier transform $H(\omega) \neq 0$ for all ω . Why is it so? Hint: $Y(\omega) = H(\omega)X(\omega)$.
- 1. sinusoidal waves (complex exponential signals)
- 2 X(0) = DC component.

X(100) = The frequency 100 Component.

- 3 The total energy conserves.
- 4. The output of a sinusoidal wave input is still sinusoidal with amplitude change |H(w)| & phase change 4H(w)
- 5. Because we can then construct the inverse freq response as $H_{I}(w) = \frac{1}{H(w)}$ $\Rightarrow H_{I}(w) \cdot Y(w) = X(w)$

Question 3: [Work-out Question 25%] Consider a discrete signal x[n] of period 5 such that within one period, the values of the signal is

$$x[n] = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ 2 & \text{if } n = 2 \\ 0 & \text{if } n = 3 \\ 0 & \text{if } n = 4 \end{cases}$$

- 1. [Outcome 4, 7%] Find out the Fourier series representation of x[n]. Note that this question is asking a complete representation so you not only have to specify the coefficient α_k but also have to specify the corresponding frequency.
- 2. [Outcome 4, 5%] Find out the value of $\sum_{k=0}^{4} \alpha_k$.
- 3. [Outcome 4, 6%] Find out the value of $\sum_{k=0}^{4} |\alpha_k|^2$. Note: α_k may be a complex number and $|\cdot|$ is the corresponding absolute value of a complex number.
- 4. [Outcomes 4, and 5, 7%] Let y[n] = x[n] x[n-1]. Find out the Fourier series representation of y[n]. Again, one needs to specify both the coefficients β_k and the corresponding frequency.

1.
$$W_0 = \frac{2\pi}{5}$$
 \Rightarrow the corresponding frequencies are $\frac{2\pi}{5}$ for $k = 0, \pm 1, \pm 2,$

2.
$$\sum_{k=0}^{4} \alpha_k = \chi_{[0]} = \underline{\mathbb{A}} O$$

3.
$$\frac{4}{20} |de|^2 = \frac{1}{N} \frac{4}{n=0} |x(n)|^2$$

= $\frac{1}{5} (|x^2|^2) = 1$

4. The corresponding frequencies are
$$k=0,\pm1,\pm2$$

$$\beta_{k} = (1 - e^{-jk\frac{2\pi}{5}}) dk$$

$$= (1 - e^{-jk\frac{2\pi}{5}})(\frac{1}{5}e^{-jk\sqrt{5}} + \frac{2}{5}e^{-jk\sqrt{5}})$$

Question 4: [Work-out Question 20+5%] Consider a serial concatenation of two LTI systems as follows.

$$\begin{array}{c|c} x(t) & & \\ \hline \\ h_1(t) & & \\ \end{array}$$

where $h_1(t) = e^{-3t}\mathcal{U}(t)$ and $h_2(t) = e^{-5t}\mathcal{U}(t)$.

- 1. [Outcomes 2, 3, 4, and 5, 10%] Let $h(t) = h_1(t) * h_2(t)$ denote the impulse response of this serially concatenated system. Find $H(\omega)$.
- 2. [Outcomes 4, and 5, 10%] Suppose $x(t) = e^{j2t}$, and we know that the output $y(t) = Ae^{j(2t+\theta)}$. Find out the gain factor A and the phase shift θ . Hint: Let $C = Ae^{j\theta}$ and rewrite $y(t) = Ce^{j2t}$. Now consider input-output relationship in the Fourier domain and find the value of C.
- 3. [Bonus: Outcomes 4, and 5, 5%] Find h(t). Hint: One can obtain the result from $H(\omega)$ or one can directly compute the convolution.

1.
$$H_{1}(\omega) = \int_{0}^{\infty} h_{1}(t) e^{-j\omega t} dt$$

$$= \int_{0}^{\infty} e^{-3t} e^{-j\omega t} dt$$

$$= \frac{1}{3+j\omega}$$

$$\Rightarrow H(\omega) = \frac{1}{5+j\omega}$$

$$\Rightarrow H(\omega) = H_{1}(\omega) \cdot H_{2}(\omega) = \frac{1}{3+j\omega} \times \frac{1}{5+j\omega}$$

$$\Rightarrow H(\omega) = H(\omega) \cdot H_{2}(\omega) = \frac{1}{3+j\omega} \times \frac{1}{5+j\omega}$$

$$\Rightarrow A = |H(\omega)| = \frac{1}{\sqrt{9+4}} \times \frac{1}{\sqrt{25+4}} = \frac{1}{\sqrt{13}} \times \frac{1}{\sqrt{29}} = \frac{1}{\sqrt{3}}$$

$$\theta = -\tan^{-1}(\frac{2}{3}) - \tan^{-1}(\frac{2}{5}) = 2 + H(\omega)$$

3. We notice that
$$H(w) = \frac{1}{2} \left(\frac{1}{3+jw} - \frac{1}{5+jw} \right)$$

$$\Rightarrow h(t) = \frac{1}{2}e^{-3t}u(t) - \frac{1}{2}e^{-5t}u(t)$$

Question 5: [Work-out Question 25%] Consider a discrete moving average system of window size 3: $h[n] = 1/3(\delta[n] + \delta[n-1] + \delta[n-2])$.

- 1. [Outcomes 4, and 5, 10%] Find out the Fourier transform $H(\omega)$ of h[n]. Note: we are considering the discrete Fourier transform.
- 2. [Outcome 4, 10%] $x[n] = \cos(3n + \pi/2)$. Find out the Fourier transform $X(\omega)$ of x[n].
- 3. [Outcomes 2, 3, 4, and 5, 5%] What is the output y[n] and its Fourier transform $Y(\omega)$?

1.
$$H(w) = \sum_{n=-\infty}^{\infty} h \in n = -j \times n$$

$$= \sum_{n=0}^{\infty} \frac{1}{3} e^{-j \times n}$$

$$= e^{-j \times w} \left(\frac{1}{3} + \frac{2}{3} \cos(w) \right)$$

$$\begin{array}{ll}
\Sigma(w) &= \cos(3n + T/2) \\
&= \sin(3n) \times (-1) \\
&= -\frac{1}{2j} \left(e^{j3n} - e^{-j3n} \right) \\
&= \frac{1}{2\pi} \int_{2\pi} X(w) e^{jwn} dw \\
&\Rightarrow X(w) &= \sum_{m=-n}^{\infty} \frac{T}{j} \delta(w - s + 2\pi m) + \frac{T}{j} \delta(w + s + 2\pi m)
\end{array}$$

$$Y(\omega) = H(\omega)X(\omega)$$

$$= \sum_{m=-p}^{b} + |(3) \frac{-\pi}{\hat{J}} S(w-3+2\pi m) + |(-3) \frac{\pi}{\hat{J}} S(w+3) + |(-3) \frac{\pi}{\hat{J}} S(w$$

$$= \sum_{m=-n}^{\infty} e^{-3\bar{j}} \left(\frac{1}{3} + \frac{2}{3} \cos(3) \right) \frac{\pi}{\bar{j}} \delta(\omega - 3 + \lambda \pi m) + e^{3\bar{j}} \left(\frac{1}{3} + \frac{2}{3} \cos(3) \right) \frac{\pi}{\bar{j}} \delta(\omega + 3 + \lambda \pi m)$$

$$y(\vec{h}) = e^{-3\vec{j}} \left(\frac{1}{3} + \frac{2}{3} \cos(3) \right) \times \frac{\pi}{\vec{j}} \left(e^{j3n} \times \frac{1}{\pi} \right)$$

$$+ e^{3\vec{j}} \left(\frac{1}{3} + \frac{2}{3} \cos(-3) \right) \times \frac{\pi}{\vec{j}} \left(e^{-j3n} \times \frac{1}{\pi} \right)$$

$$= \left(\frac{1}{3} + \frac{2}{3}\cos(3)\right) \sin(3h-3) \times (-1) \times$$

of by directly computing the convolution

$$y[n] = \frac{1}{3} \cos(3n + \frac{\pi}{2}) + \frac{1}{3} \cos(3(n-1) + \frac{\pi}{2})$$

$$+\frac{1}{3}\cos(3(n-2)+\frac{11}{2})$$