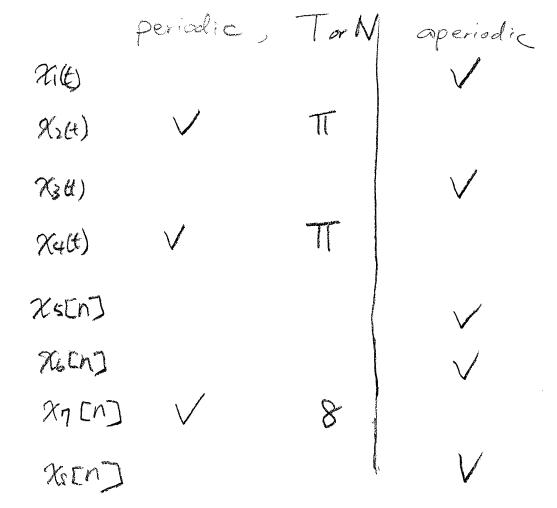
Question 1: [Multiple Choices, 10%] Consider the following continuous signals

$$x_1(t) = \mathcal{E}_{\mathcal{V}}\{\cos(2\pi t)\mathcal{U}(t-1)\}$$

$$x_2(t) = [\sin(t-\pi/3)]^2$$

$$x_3(t) = \sin(\frac{\pi}{8}t^2)$$


$$x_4(t) = e^{j(t-1)} + e^{j(2t-1)}$$

and discrete signals

$$x_5[n] = \mathcal{E}_{\mathcal{V}}\{\cos(2\pi n)\mathcal{U}[n]\}$$

 $x_6[n] = \sin(7n/3 - \pi/3)$
 $x_7[n] = \sin(\frac{\pi}{8}n^2)$
 $x_8[n] = e^{j(n-1)} + e^{j(2n-1)},$

where $\mathcal{E}_{\mathcal{V}}\{x(t)\}$ means the even part of the signal x(t).

- 1. [Outcome 1, 5%] For $x_1(t)$ to $x_4(t)$, determine whether it is periodic or not. If it is periodic, write down the fundamental period.
- 2. [Outcomes 1 and 6, 5%] For $x_5[n]$ to $x_8[n]$, determine whether it is periodic or not. If it is periodic, write down the fundamental period.

Question 2: [Multiple Choices, 20%] Consider the following systems:

System 1:
$$y(t) = x(t-2) + x(2-t)$$

System 2: $y(t) = x(\sin(t))$
System 3: $y[n] = nx[n]$
System 4: $y[n] = \begin{cases} 0, & x[n] < 0 \\ x[n] + x[n-2], & x[n] \ge 0 \end{cases}$

- 1. [Outcome 1,4%] For Systems 1 to 4, determine whether the systems are memoryless.
- 2. [Outcome 1, 4%] For Systems 1 to 4, determine whether the systems are invertible.
- 3. [Outcome 1, 4%] For Systems 1 to 4, determine whether the systems are causal.
- 4. [Outcome 1, 4%] For Systems 1 to 4, determine whether the systems are linear.
- 5. [Outcome 1, 4%] For Systems 1 to 4, determine whether the systems are time-invariant.

	M	I	C	<u></u>	TI
Sys 1	With Menny	Not Invertible	Non-Cause	linear	Time-Lung
Sys 2	With Menory	Not Inverible	Non-Causal	Linear	Time Varja
Sys 3	Memoryless	Invertible	Causal	linear	Time Varie
Svs 4	W. Menona	N-r muxile	Censal	Nonlinear	Time Invini

Question 3: (15%) A system $x(t) \longrightarrow y(t)$ is linear. The behavior of this system is described as follows. If the input signal x(t) is an even signal, then the system outputs y(t) = 3x(t). If the input signal x(t) is an odd signal, the system outputs y(t) = x(2t-1). Answer the following questions.

- 1. [Outcome 1, 3%] What do we mean by "even signals"? You can use words to define an even signal, or you can use mathematical expression.
- 2. [Outcomes 1 and 2, 10%] If we use $x_1(t) = \cos(t) + \sin(2t)$ as the input signal, what is the output $y_1(t)$?
- 3. [Outcome 1, 2%] Is the system time-invariant?

An even signal is such that the flipped image over two axis is street.

Or equivalently x(t) = x(-t) for all t.

2 cos(t) is an even signal

→ 0×(t) ===== 3 cos (t)

sin(2t) is an odd signel

=> sin(zt) -> sin(z(zt-1))= sin(st-2)

 $\Rightarrow \chi(t) \longrightarrow 3\cos(t) + \sin(4t-2)$ =4i(t)

No: since a shift to of the odd input signal gives a 2 to shift of the output

e ^c		

Question 4: (15%) A practical question. A stock index tracking system is tracking the moving average y[n] of the stock index x[n] over the last three days including the current day. A trader says that when the output of the moving average tracking system is 100 points below the current index, namely when y[n] < x[n] - 100, he will purchase 200 shares of Stock P the next day.

Suppose we know that the Dow Jones Industrial Average was 11,000 over the past three days, i.e., when n = -2, -1, 0. And the indices of the following 8 days are

Day n	Stock Index $x[n]$
1	11134
2	11214
3	11312
4	11379
5	11623
6	11423
7	11032
8	10989

- 1. [Outcomes 1 and 2, 7%] Write down the system description y[n] in terms of x[n]. What is the impulse response h[n] of this system?
- 2. [Outcomes 1, 2 and 3, 8%] When is the trader going to place the order of Stock P. Justify your answer.

/
$$A(n) = \frac{1}{3} \sum_{k=0}^{2} x(n-k)$$
 $h(n) = \frac{1}{3} \sum_{k=0}^{2} x(n-k)$
 $2 \quad A(0) = \frac{1000 + 1000 + 1000}{3} = 1000 + x(0)$
 $4(1) = \frac{1000 + 1000 + 1134}{3} = 1004 + x(0)$
 $4(1) = \frac{1000 + 1134 + 11214}{3} = 11116 + x(0)$
 $4(1) = \frac{1134 + 11214 + 11312}{3} = 11220 + x(3)$

$$4[4] = \frac{11214 + 1/312 + 1/379}{3} = 1/301\frac{2}{3} + \frac{2(4)}{100}$$

$$4[5] = \frac{11312 + 11379 + 11623}{3} = 11438 < 2[5]$$

Question 5: (25%) Consider a system $y[n] = (x[n] + x[n-1])^2 + 0.5y[n-1]$, and assume that the y[n] = 0 for all n < 0.

- 1. [Outcome 2, 6%] Find the impulse response h[n].
- 2. [Outcome 2, 9%] If the input is $x[n] = \mathcal{U}[n] \mathcal{U}[n-2]$, find the output y[n].
- 3. [Outcomes 1 and 3, 8%] Compute x[n] * h[n].
- 4. [Outcome 3, 2%] Is y[n] = x[n] * h[n]? Explain your results.

$$3^{12} = (1+0)^{2} + 0.5 \times 0 = 1$$

$$3^{12} = (1+1)^{2} + 0.5 \times 1 = 4.5$$

$$3^{12} = (0+0)^{2} + 0.5 \times 4 = \frac{13}{4}$$

$$3^{13} = (0+0)^{2} + 0.5 \times 4 = \frac{13}{4}$$

3. XGD+ YOU can be obtained by viewing it as a linear system

$$\Rightarrow 800] + 100]
= (800) + 3 - (-1)^{1} U - (-1)
+ 800] + 3 - (-1)^{1} U - (-1)
+ 800] + 3 - (-1)^{1} U - (-1)
+ 800] + 3 - (-1)^{1} U - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-1) + 3 - (-1)
+ 800] + 3 - (-$$

4. No. Because the system is Not linear.

Question 6: (20%) Consider a LTI system with impulse response $h(t) = \mathcal{U}(t) - \mathcal{U}(t-2)$. Consider an input signal $x(t) = \cos(2\pi t) + \sin(\pi t)$.

- 1. [Outcomes 1 and 4, 8%] Find out the Fourier series coefficients α_k and the fundamental frequency ω such that $x(t) = \sum_{k=-\infty}^{\infty} \alpha_k e^{jk\omega t}$.
- 2. [Outcome 3, 12%] Find the output y(t) by the convolution integral. You may want to use the distributive property of the convolution integral.

1. The period is
$$L.C.M.(\frac{2\pi}{2\pi}, \frac{2\pi}{\pi})$$

$$\Rightarrow \omega = \frac{2\pi}{2} = \pi.$$

Since
$$\cos(2\pi ct) = \frac{1}{2}(e^{j2\omega t} + e^{-j2\omega t})$$

& $\sin(\pi ct) = \frac{1}{2j}(e^{j\omega t} - e^{-j\omega t})$

2. Let
$$\chi_i(t) = \cos(\lambda \pi t)$$

 $\chi_i(t) = \chi_i(t) + h(t)$

$$= h(t) * \chi_{1}(t)$$

$$= \int_{-\infty}^{\infty} \left[u(s) - u(s-2) \right] \cos \left(2\pi (t-s) \right) ds$$

$$= \int_{0}^{2} \cos \left(2\pi (t-s) \right) ds$$

$$= 0.$$

$$\pi_{2}(t) = \sin \left(\pi(t) \right)$$

$$= \int_{-\infty}^{\infty} \left[\pi(t) + h(t) \right]$$

$$= h(t) * \chi_{2}(t)$$

$$= \int_{-\infty}^{\infty} \left[\pi(s) - u(s-2) \right] \sin \left(\pi(t-s) \right) ds$$

$$= \int_{0}^{2} \sin \left(\pi(t-s) \right) ds$$

$$= 0.$$