Question 43
2.21

$$
\text { b) } \begin{aligned}
& \alpha^{n} u[n] * \alpha^{n} u[n] \\
= & \sum_{k=-\infty}^{\infty} \alpha^{k} \alpha^{n-k} u[k] u[n-k] \\
= & \alpha^{n} \sum_{k=0}^{n} \alpha^{(k-k)}=(n+1) \alpha^{n} u[n]
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) })_{k=0}\left(\begin{array}{llllllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 1213 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}\right) \\
& k=210000111111000111111000 \\
& k=310000011111100011111100 \\
& k=410000001111110001111110 \\
& 001234554322234554321
\end{aligned}
$$

Question 44
2.22
a) $y(t)=\int_{-\infty}^{\infty} e^{-\alpha \tau} e^{-\beta(t-\tau)} d \tau$

$$
=e^{-\beta t} \int_{0}^{t} e^{(\beta-\alpha) \tau} d \tau=\frac{e^{-\beta t}}{\beta-\alpha}\left[e^{(\beta-\alpha) \tau}\right]_{\tau=0}^{\tau=t} u(t)=\frac{e^{-\beta t}\left(e^{(\beta-\alpha) t}-1\right)}{\beta-\alpha} u(t)
$$

if $\alpha=\beta \rightarrow y(t)=t e^{-\beta t} u(t)$

Question 44-Continued
e) *result will be periodic, so only determine one period

$$
\begin{aligned}
& x(\tau)=\left\{\begin{array}{cl}
1, & -\frac{1}{2}<\tau<\frac{1}{2} \\
-1, & \frac{1}{2}<\tau<\frac{3}{2}
\end{array}\right. \\
& h(t-\tau)=\left\{\begin{array}{cc}
1-t+\tau, & t-1 \leq \tau \leq t \\
0, & \text { else }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { case } 1 \rightarrow t<-\frac{1}{2} \rightarrow 0 \\
& \text { case } 2 \rightarrow-\frac{1}{2}<t<\frac{1}{2} \\
& y(t)=\int_{-\frac{1}{2}}^{t}(1-t+\tau) d \tau+\int_{t-1}^{-1 / 2}-(1-t+\tau) d \tau \\
& =\left[\tau-t \tau+\frac{1}{2} \tau^{2}\right]_{\tau=-\frac{1}{2}}^{t}+\left[-\tau+t \tau-\frac{1}{2} \tau^{2}\right]_{\tau=t-1}^{t-1} \\
& =t-t^{2}+\frac{1}{2} t^{2}-\left(-\frac{1}{2}+\frac{1}{2} t+\frac{1}{8}\right)+\frac{1}{2}-\frac{1}{2} t-\frac{1}{8}-\left(-t+1+t^{2}-t-\frac{1}{2} t^{2}+t-\frac{1}{2}\right) \\
& =-\frac{1}{2} t^{2}+\frac{1}{2} t+\frac{3}{8}-\frac{1}{8}+\frac{1}{2} t-\frac{1}{2} t^{2} \\
& =-t^{2}+t+\frac{1}{4} \\
& \text { case } 3 \rightarrow \frac{1}{2}<t<\frac{3}{2} \\
& y(t)=\int_{t-1}^{1 / 2}(1-t+\tau) d \tau+\int_{1 / 2}^{t}-(1-t+\tau) d \tau \\
& =\left[\tau-t \tau+\frac{1}{2} \tau^{2}\right]_{\tau=t-1}^{1 / 2}+\left[-\tau+t \tau-\frac{1}{2} \tau^{2}\right]_{\tau=1 / 2}^{t} \\
& =\frac{1}{2}-\frac{1}{2} t+\frac{1}{8}-t+1-\left(-t^{2}+t\right)-\frac{1}{2} t^{2}+t-\frac{1}{2}-t+t^{2}-\frac{1}{2} t^{2}+\frac{1}{2}-\frac{1}{2} t+\frac{1}{8} \\
& =\underline{t^{2}-3 t+\frac{7}{4}} \quad y(t)=\left\{\begin{array}{lc}
-t^{2}+t+\frac{1}{4},-\frac{1}{2}<t \leq \frac{1}{2} & \text { repeated with } \\
t^{2}-3 t+\frac{7}{4}, \frac{1}{2}<t<\frac{3}{2} & T=2
\end{array}\right.
\end{aligned}
$$

Question 45

* causal if: $h[n]=0$ for $n<0$
2.28
* stable if: $\sum_{n=-\infty}^{\infty}|h[n]|<\infty \quad\left(\sum_{n=1}^{\infty} r^{n}=\frac{1}{1-r}\right.$ if $\left.|r|<1\right)$
b) $h[n]=(0.8)^{n} u[n+2]$
- not causal
- stable (geometric series with $r<1$)
d) $h[n]=5^{n} u[3-n]$
- not causal (u[3-n] turns off at $n=3$)
- stable ($r=\frac{1}{5}$ since n goes to $-\infty$)
f) $h[n]=\left(-\frac{1}{2}\right)^{n} u[n]+(1.01)^{n} u[1-n]$
- not causal
- stable ($r=\frac{1}{1.01}$ for negative n)
g) $h[n]=n\left(\frac{1}{3}\right)^{n} u[n-1]$
- causal
- Stable $\left(\sum_{n=-\infty}^{\infty} h[n]=1<\infty\right)$

Question 46
2.29

* causal if $h(t)=0$ for $t<0$ * stable if $\int_{-\infty}^{\infty}|h(t)| d t<\infty$
c) $h(t)=e^{-2 t} u(t+50)$
- not causal
- stable

Question 46-Continued
e) $h(t)=e^{-6|t|}$

- not causal
- stable
g) $h(t)=\left(2 e^{-t}-e^{\left(\frac{(-100)}{100}\right)}\right) u(t)$
- causal
- unstable $\left(\int_{-\infty}^{\infty} 2 e^{\downarrow} \downarrow+\int_{-\infty}^{\infty} \underset{\text { finite }}{\infty} \underset{\text { infinite }}{\downarrow} e^{\frac{t-100}{100}} d t\right)$

Question 47
2.40
a)

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{t} e^{-(t-\tau)} x(\tau-2) d \tau \\
& \\
&=\int_{-\infty}^{t-2} x(s) e^{-(t-(s+2))} d s=\int_{-\infty}^{\infty} x(s) e^{-((t-s)-2)} u((t-s)-2) d s
\end{aligned}
$$

convolution: $\int_{-\infty}^{\infty} x(s) h(t-s) d s$ by inspection:
b)

$$
h(t)=e^{-(t-2)} u(t-2)
$$

$$
\begin{aligned}
& -1<t-s<2 \\
& t-2<s<t+1
\end{aligned}
$$

case $\left\lvert\, \begin{gathered}t+1>2+t-2<2 \\ t-1<t<4\end{gathered} \quad \frac{\text { case } 2}{t+1} t-2>2 \quad t>4\right.$

$$
\begin{aligned}
& y(t)=\int_{2}^{t+1} e^{-(s-2)} d s \\
& =\left[-e^{-(s-2)}\right]_{s=2}^{t+1} \quad y(t)=\int_{t-2}^{t+1} e^{-(s-2)} d s \\
& =1-e^{-(t-1)} \quad y(t)=\left\{\left.\begin{array}{cc}
1-e^{-(t-1)}-1<t \leq 4 \\
e^{-(t-4)}-(t-1) \\
-e^{-(t)}, t>4 \\
0, e l s e
\end{array} \right\rvert\,=e^{-(t-4)}-e^{-(s-2)}\right]_{s=t-2}^{-(t-1)}
\end{aligned}
$$

Question 48

$$
\begin{aligned}
y[n]=x[n]-0.5 y[n-1] \quad x[n]=2^{-n} u[n] \\
\text { 1. } \begin{aligned}
h[0] & =\partial[n]=1 \\
h[1] & =2[n]-0.5=0-0.5=-\frac{1}{2} \\
h[2] & =\partial[n]-(-0.25)=\frac{1}{4} \\
h[3] & =\frac{1}{8} \\
h[4]= & -\frac{1}{16} \\
& h[n]=(-1)^{n} 2^{-n} u[n]=\left(-\frac{1}{2}\right)^{n} u[n]
\end{aligned}
\end{aligned}
$$

2.

$$
\begin{aligned}
& y[5]=x[5] * h[5] \\
&= \sum_{n=-\infty}^{\infty} x[5-n] h[n]=\left(-\frac{1}{2}\right)^{5} \sum_{n=0}^{5}(-1)^{n}=0 \\
&= \frac{1}{2^{5}} \cdot\left(-\frac{1}{2}\right)^{0}+\frac{1}{2^{4}} \cdot\left(-\frac{1}{2}\right)^{1}+\frac{1}{2^{3}}\left(-\frac{1}{2}\right)^{2}+\frac{1}{2^{2}}\left(-\frac{1}{2}\right)^{3} \\
&+\frac{1}{2^{1}}\left(-\frac{1}{2}\right)^{4}+\frac{1}{2^{0}}\left(-\frac{1}{2}\right)^{5} \\
&= 0 \\
& y[5]=0
\end{aligned}
$$

3.

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{\infty}(-2)^{-(n-k)} 2^{-k} u[n] u[n-k] \\
& =\sum_{k=0}^{n} 2^{-k}(-2)^{-n+k}=(-2)^{-n} \sum_{k=0}^{n}(-1)^{-k} \\
y[n] & =\left\{\begin{array}{c}
0, n<0 \\
(-2)^{-n}, \text { even } n \geq 0 \\
0, \text { odd } n \geq 0
\end{array}\right.
\end{aligned}
$$

Question 49

$$
y(t)=\frac{1}{15} \int_{t-15}^{t} x(s) d s
$$

1. yes, the system is LTI

$$
\begin{aligned}
& x(t)=\alpha_{1} x_{1}(t)+\alpha_{2} x_{2}(t) \\
& y(t)=\frac{\frac{1}{15} \int_{t-15}^{t} \alpha_{1} x_{1}(s)+\alpha_{2} x_{2}(s)}{y(t)=} \begin{array}{r}
\frac{\alpha_{1}}{15} \int_{t-15}^{b} x_{1}(s) d s+\frac{\alpha_{2}}{15} \int_{t-15}^{t} x_{2}(s) d s \\
y_{2}(t)
\end{array} \\
& \therefore \text { linear }
\end{aligned}
$$

$$
x(t+T) \xrightarrow{s y^{s}} \frac{1}{15} \int_{t-15}^{t} x(s+T) d s
$$

$$
\operatorname{let} s^{\prime}=s+T
$$

$$
\frac{1}{15} \int_{t-15+T}^{t+T} x\left(s^{\prime}\right) d s^{\prime}=y(t+T)
$$

$$
x(t+T) \xrightarrow{\text { sys }} y(t+T) \quad \therefore \text { time -invariant }
$$

2. $h(t)=\frac{1}{15} \int_{t-15}^{t} 2(s) d s=\frac{1}{15}[u[s]]_{s=t-15}^{t}$

$$
=\frac{1}{15}(u[t]-u[t-15])
$$

Question 49
3. not memoryless (has memory)

- stable
- causal $(h(t)=0$ for $t<0)$

4.

$$
\begin{aligned}
& x(t)=\cos (2 \pi t) \\
& y(t)=\frac{1}{15} \int_{t-15}^{t} \cos (2 \pi s) d s=\frac{1}{15 \cdot 2 \pi}[\sin (2 \pi s)]_{s=t-15}^{t} \\
& y(t)=\frac{1}{30 \pi} \sin (2 \pi t)-\frac{1}{30 \pi} \sin (2 \pi(t-15)) \\
& * \operatorname{since} \sin (2 \pi t)=\sin (2 \pi t-30 \pi) \\
& y(t)=0
\end{aligned}
$$

5. not invertible (if you know the average of a function, there is not a unique mapping back to the original function)

Question 50

$$
\begin{aligned}
& \dot{y}(t)=-y(t)+x(t) \\
& \text { 1. } y(t)=e^{-t} u(t) \quad x(t)=\partial(t) \\
& \frac{d}{d t}\left[e^{-t} u(t)\right]=-e^{-t} u(t)+\partial(t) \\
& \frac{d}{d t}\left(e^{-t}\right) \cdot u(t)+e^{-t} \cdot \frac{d}{d t}(u(t))=-e^{-t} u(t)+\partial(t) \\
& \quad-e^{-t} u(t)+e^{-t} \partial(t)=-e^{-t} u(t)+\partial(t)
\end{aligned}
$$

Question 50-Continued

* the value of e^{-t} at $t=0$ is $e^{0}=1$
so $e^{-t} \partial(t)=\partial t$

$$
-e^{-t} u(t)+\partial(t)=-e^{-t} u(t)+\partial(t)
$$

2. When $x(t)=\partial(t), y(t)=e^{-t} u(t)$

$$
\text { so } h(t)=e^{-t} u(t)
$$

Question 51

$$
x_{1}=\left(\begin{array}{c}
\sqrt{2} / 2 \\
-\sqrt{2} / 2 \\
0
\end{array}\right) \quad x_{2}=\left(\begin{array}{c}
\sqrt{3} / 3 \\
\sqrt{3} / 3 \\
\sqrt{3} / 3
\end{array}\right) \quad x_{3}=\left(\begin{array}{c}
\sqrt{6} / 6 \\
\sqrt{6} / 6 \\
-2 \sqrt{6} / 6
\end{array}\right)
$$

$$
\begin{aligned}
& \left|x_{1}\right|=\left|x_{2}\right|=\left|x_{3}\right|=1 \\
& x_{1} \cdot x_{2}=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{3}-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{3}+0=0 \\
& x_{1} \cdot x_{3}=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{6}}{6}-\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{6}}{6}+0=0 \\
& x_{2} \cdot x_{3}=\frac{\sqrt{3}}{3} \cdot \frac{\sqrt{6}}{6}+\frac{\sqrt{3}}{3} \cdot \frac{\sqrt{6}}{6}-\frac{\sqrt{3}}{3} \cdot \frac{2 \sqrt{6}}{6}=0
\end{aligned}
$$

$\therefore\left\{x_{1}, x_{2}, x_{3}\right\}$ forms an orthonormal basis for \mathbb{R}^{3}

$$
\begin{aligned}
& x=0.7 \vec{x}_{1}+0.3 \vec{x}_{2}+0.4 \vec{x}_{3} \\
& x=\left(\begin{array}{c}
\frac{7 \sqrt{2}}{20}+\frac{3 \sqrt{3}}{10}+\frac{\sqrt{6}}{15} \\
-\frac{7 \sqrt{2}}{20}+\frac{3 \sqrt{3}}{10}+\frac{\sqrt{6}}{15} \\
\frac{3 \sqrt{3}}{10}-\frac{2 \sqrt{6}}{15}
\end{array}\right)
\end{aligned}
$$

Question 51-Continued

$$
x^{\prime}=(7 / 10,3 / 10,4 / 10)=\alpha, \vec{x}_{1}^{\top}+\alpha_{2} \vec{x}_{2}^{\top}+\alpha_{3} \vec{x}_{3}^{\top}
$$

since the vectors are or thonormal.

$$
\begin{aligned}
& \alpha_{1}=x^{\prime} \cdot x_{1} \quad \alpha_{2}=x^{\prime} \cdot x_{2} \quad \alpha_{3}=x^{\prime} \cdot x_{3} \\
& \alpha_{1}=\frac{7 \sqrt{2}}{20}-\frac{3 \sqrt{2}}{20}=\frac{\sqrt{2}}{30}+\frac{\sqrt{3}}{10}+\frac{2 \sqrt{3}}{15}=\frac{7 \sqrt{3}}{15} \\
& \alpha_{2}=\frac{7 \sqrt{6}}{60}+\frac{\sqrt{6}}{20}-\frac{8 \sqrt{6}}{60}=\frac{\sqrt{6}}{30}
\end{aligned}
$$

- If we can represent any arbitray vector in \mathbb{R}^{3} as a linear combination of $\left\{x_{1}, x_{2}, x_{3}\right\}$, then we can determine the output of any vector for a linear system by taking a linear combination of the outputs for each of the basis vectors, using the same coefficients $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$,

