Question 32

- $x[n]=u[n+2]-2 u[n]+u[n-1], n=-2$ to $n=3$

- $x[n]=(n+1) u[n+1]-2 u[n]-(n-1) u[n-3]$

- $x[n]=\delta[n]-\delta[n-1]+u[n-2]-u[n+1]$

The above signal graph for 8(c) is incorrect. The correct graph is given below.

Corrected Solution for Q8 part (c)

$$
x[n]=\delta[n]-\delta[n-1]+u[n-2]-u[n+1]
$$

Question 33

- $x[n]=\sum_{k=-\infty}^{\infty} a_{k} \delta[n-k]$.
we know for some $l \in \mathbb{Z}$

$$
\begin{aligned}
& \text { we } k n o w \\
& x[l]=x[n] \delta[n-l] \\
& x[l]=\sum_{k=-\infty}^{\infty} a_{k} \delta[n-k] \delta[n-l] \\
& x[l]=\left\{\begin{array}{cc}
a_{k} & l=k \\
0 & l \neq k
\end{array}\right. \\
& \Rightarrow a_{k}=x[k] \\
& x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \\
&=\sum_{k=-\infty}^{\infty} x[k](u[n-k]-u[n-k-1])=\sum_{k=-\infty}^{\infty} x[k] u[n-k]-\sum_{k=-\infty}^{\infty} x[k] u[n-k-1]
\end{aligned}
$$

let $l=k+1 \quad k=l-1$

$$
=\sum_{k=-\infty}^{\infty} x[k] u[n-k]-\sum_{l=-\infty}^{\infty} x[l-1] u[n-l]
$$

now redefine l with K

$$
\begin{aligned}
& =\sum_{k=-\infty}^{\infty} x[k] u[n-k]-\sum_{k=-\infty}^{\infty} x[k-1] u[n-k] \\
& =\sum_{k=-\infty}^{\infty}(x[k]-x[k-1]) u[n-k] \\
& =\sum_{k=-\infty}^{\infty} \beta_{k} u[n-k] \Rightarrow \beta_{k}=x[k]-x[k-1]
\end{aligned}
$$

- $X(t)=\int_{-\infty}^{\infty} \alpha_{s} \delta(t-s) d s$
if we consider any realization of t, say r, we have

$$
\begin{aligned}
& x(r)=\int_{-\infty}^{\infty} \alpha_{s} \delta(r-s) d s \\
& x(r)=\alpha_{s} \int_{-\infty}^{\infty} \delta(r-s) d s \\
& x(r)=\alpha_{s} \cdot 1 \\
& x(r)=\alpha_{s} \\
& \Rightarrow \alpha_{s}=x(t)
\end{aligned}
$$

Question 34
1.27)
a.) $y(t)=x(t-2)+x(2-t)$
1.) Memoryless?
system has memory since it depends on past values of the input $-x(t-2)$
2.) Time Invariant?
let $x_{1}(t)=x\left(t-t_{0}\right)$

$$
\begin{aligned}
& x_{1}(t) \xrightarrow{\text { stone }} x_{1}(t-2)+x_{1}(2-t)=x\left(t-2-t_{0}\right)+x\left(2-t-t_{0}\right) \\
& y\left(t-t_{0}\right)=x\left(\left(t-t_{0}\right)-2\right)+x\left(2-\left(t-t_{0}\right)\right)=x\left(t-2-t_{0}\right)+x\left(2-t+t_{0}\right)
\end{aligned}
$$

since the two outputs are different \Rightarrow Time Variant
3.) Linear?

$$
\begin{align*}
\begin{aligned}
X_{3}(t) & =\alpha_{1} x_{1}(t)+\alpha_{2} x_{2}(t) \\
X_{3}(t) \xrightarrow{\text { system }} & X_{3}(t-2)+X_{3}(2-t) \\
& =\alpha_{1} x_{1}(t-2)+\alpha_{2} x_{2}(t-2)+\alpha_{1} x_{1}(2-t)+\alpha_{2} x_{2}(2-t) \\
X_{1}(t) \xrightarrow{\text { sys }}[& {\left[x_{1}(t-2)+x_{1}(2-t)\right] \alpha_{1} \xrightarrow{\text { se }} } \\
X_{2}(t) \xrightarrow{\text { syst }} & {\left[x_{2}(t-2)+x_{2}(2-t)\right] \alpha_{2} \xrightarrow{=} \alpha_{1} x_{1}(t-2)+\alpha_{2} x_{2}(t-2)+} \\
& \alpha_{1} x_{1}(2-t)+\alpha_{2} x_{2}(2-t)
\end{aligned}
\end{align*}
$$

Since (1.) = (2) System is Linear
4.) causal?
if $t<2$, the system depends on a future value ex. $y(0)=x(-2)+x(2)$
\Rightarrow not Causal
5.) Stable?
if the input $x(t)$ is bounded by B, that is $|x(t)|<B$, then for $y(t)=x(t-2)+x(2-t),|y(t)| \leq|x(t-2)|+|x(2-t)| \leq 2 B$ for all $t \Rightarrow$ stable
b.) $y(t)=[\cos (3 t)] x(t)$
1.) Memory less?

The system is memoryless because it only depends on the current value of t
2.) Time -Invariant?

$$
\begin{aligned}
& x_{1}(t)=x\left(t-t_{0}\right) \\
& x_{1}(t) \xrightarrow{\text { sys }}[\cos (3 t)] x_{1}(t)=[\cos (3 t)] x\left(t-t_{0}\right) \\
& y\left(t-t_{0}\right)=\left[\cos \left(3\left(t-t_{0}\right)\right] x\left(t-t_{0}\right)\right. \text { (2) } \\
& (1) \neq \theta \Rightarrow \text { Time-Uariant }
\end{aligned}
$$

3.) Linear?

$$
\begin{aligned}
& x_{3}(t)=\alpha_{1} x_{1}(t)+\alpha_{2} x_{2}(t) \\
& x_{3}(t) \xrightarrow{\text { sys }} \cos (3 t) x_{3}(t)=\cos (3 t) \alpha_{1} x_{1}(t)+\cos (3 t) \alpha_{2} x_{2}(t) \text { (1) } \\
& x_{1}(t) \xrightarrow{\text { syst }} \cos (3 t) x_{1}(t) \xrightarrow{\alpha_{1}}+\alpha_{1}(t) \rightarrow \alpha_{1} \cos (3 t) x_{1}(t)+\alpha_{2} \cos (3 t) x_{2}(t) \\
& x_{2}(t) \xrightarrow{\text { rays }} \cos (3 t) x_{2}(t) \xrightarrow[\alpha_{2}]{\text { is Linear }} \\
& (1)=(2) \Rightarrow \text { system }
\end{aligned}
$$

4.) Causal?
the system is causal because it doesn't depend on any future values of time.
5.) if $|x(t)|<B$, then $|y(t)| \leq|\cos (3 t)||x(t)| \leq B$
for all $t \Rightarrow$ system is stable
C.) $y(t)=\int_{-\infty}^{2 t} x(\tau) d \tau$
1.) Memoryless?
system has memory because it depends on past valves of time (times $-\infty$ to t)
2.) Time- Invariant?

$$
\begin{align*}
& x_{1}(t)=x\left(t-t_{0}\right) \\
& x_{1}(t) \xrightarrow{s_{v}} \int_{-\infty}^{2 t} x_{1}(\tau) d \tau=\int_{-\infty}^{2 t} x\left(\tau-t_{0}\right) d \tau \Rightarrow \int_{-\infty}^{s=\tau-t_{0}} 2 t-t_{0} \tag{1.}\\
& y\left(t-t_{0}\right)=\int_{-\infty}^{2\left(t-t_{0}\right)} x(\tau) d \tau=\int_{-\infty}^{2 t-2 \tau_{0}} x(\tau) d \tau \tag{2}\\
& (1) \neq \text { (2) } \Rightarrow \text { Tine - Variant }
\end{align*}
$$

3.) Linear?

$$
\begin{aligned}
& x_{3}(t)=\alpha_{1} x_{2}(t)+\alpha_{2} x_{2}(t) \\
& x_{3}(t) \xrightarrow{s y s} \int_{-\infty}^{2 t} x_{3}(\tau) d \tau=\int_{0}^{2 t}\left[\alpha_{1} x_{1}(\tau)+\alpha_{2} x_{2}(\tau)\right] d \tau
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1.) }=\text { (2) } \Rightarrow \text { Linear }
\end{aligned}
$$

4.) Causal?
system is not causal because it depends on future values of time (up to at)
5.) stable?

It is clear that the system is not stable. An example is if $x(t)=1 \leq 1$ for all t. Here $y(t)=\int_{-\infty}^{2 t} 1 d \tau$

$$
\text { if } t=0,|y(t)|=\left|\int_{-\infty}^{0}\right| d \tau|=|-\infty|=\infty
$$

Question 35
1.28)
a.) $y[n]=x[-n]$
1.) Memoryless?

If $n>0$, then the output depends on a past value of the input \Rightarrow has memory
2.) Time-Invariant?

Let $X[n-N]=X_{1}[n] \xrightarrow{\text { sys }} X_{1}[-n]=X[-n-N]$

$$
\begin{equation*}
y[n-N]=x[(n-N)]=x[-n+N] \tag{1}
\end{equation*}
$$

Since (1.) \neq (2.) \Rightarrow Time-Variant
3.) Linear?

$$
\begin{align*}
& \alpha_{1} X_{1}+\alpha_{2} X_{2}=X_{3} \xrightarrow{\text { syst }} X_{3}[-n]=\alpha_{1} X_{1}[-n]+\alpha_{2} X_{2}[-n] \tag{1.}\\
& X_{1}[n] \xrightarrow{\text { syst }} X_{1}[-n] \xrightarrow{\alpha_{1}} X_{2}[-n] \xrightarrow[\alpha_{2}]{\alpha_{1}} \alpha_{1} X_{1}[-n]+\alpha_{2} X_{2}[-n] \\
& X_{2}[n] \xrightarrow{\text { syst }} X^{2}[-n] \tag{2}
\end{align*}
$$

since (1.) $=(2) \Rightarrow$ Linear
4.) Causal?
if $n<0$, then the output depends on a future value of the input \Rightarrow not causal
5.) stable?
if $|x[n]| \leq B$, then $|y[n]|=|x[-n]| \leq B$
\Rightarrow stable
b.) $y[n]=x[n-2]-2 x[n-8]$
1.) Memoryless?
depends on past values of the input \Rightarrow has memory
2.) Time-Invariant?

$$
\begin{align*}
& x[n-N]=X_{1}[n] \xrightarrow{\text { sss }} X_{1}[n-2]-2 x_{1}[n-8]=x[n-N-2]-2 x[n-N-8] \tag{1.}\\
& y[n-N]=x[(n-N)-2]-2 x[(n-N)-8]
\end{align*}
$$

Since (1.) $=(2) \Rightarrow$ Time-Invariant
3.) Linear?

$$
\begin{aligned}
& \alpha_{1} X_{1}[n]+\alpha_{2} X_{2}[n]=X_{3}[n] \xrightarrow{\text { sos }} X_{3}[n-2]-2 X_{3}[n-8] \text {. } \\
& =\alpha_{1} X_{1}[n-2]+\alpha_{2} X_{2}[n-2]-2\left(\alpha_{1} X_{1}[n-8]+\alpha_{2} X_{2}[n-8]\right.
\end{aligned}
$$

$$
\begin{align*}
& +\alpha_{2} x_{2}[n-2]-2 \alpha_{2} x_{2}[n-8] \tag{2}
\end{align*}
$$

since (1) $=(2) \Rightarrow$ Linear
4.) Causal?
does not depend on any future value of time \Rightarrow Causal
5.) stable?

$$
\begin{aligned}
\text { let }|X[n]| \leq B, & \text { so }|y[n]|=|\times[n-2]-2 \times[n-8]| \leq|X[n-2]|+|2 \times[n-8]| \\
\leq 3 B & \Rightarrow \text { stable }
\end{aligned}
$$

C.) $y[n]=n x[n]$
1.) Memory less?
output only depends on current value of input \Rightarrow memoryless
2.) Time Invariant?

$$
\begin{align*}
& X[n-N]=X_{1}[n] \xrightarrow{\text { sis }} n X_{1}[n]=n X[n-N] \tag{1}\\
& y[n-N]=(n-N) X[n-N] \tag{2}\\
& (11) \neq(2) \Rightarrow \text { Time-Variant }
\end{align*}
$$

3.) Linear?

$$
\begin{align*}
& \alpha_{1} X_{1}[n]+\alpha_{2} X_{2}[n]=X_{3}[n] \xrightarrow{\text { sns }} n X_{3}[n]=n \alpha_{1} X_{1}[n]+n \alpha_{2} X_{2}[n] \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { (1) }=\text { (2) } \Rightarrow \text { Linear }
\end{aligned}
$$

4.) Causal?
doesn't depend on any future time input \Rightarrow Causal
5.) Stable?
if $X[n]=1 \leq 1, y[n]=n \cdot 1=n$ which doesn't have a bound \Rightarrow not stable

Question 36
1.28.)

$$
\text { e.) } y[n]= \begin{cases}x[n] & n \geq 1 \\ 0 & n=0 \\ x[n+1] & n \leq-1\end{cases}
$$

1.) Memoryless?
outpat depends ona future value of the input \Rightarrow has memory
2.) Time-Invariant?

$$
\begin{align*}
& \text { Time-Invariant? } \tag{1}\\
& x[n-N]=x_{1}[n] \xrightarrow{s y s}\left\{\begin{array}{cc}
x_{1}[n], & n \geq 1 \\
0, & n=0 \\
x_{1}(n+1], & n \leq 1
\end{array}=\left\{\begin{array}{cc}
x[n-N], & n \geq 0 \\
0 & n=0 \\
x[n+1-N], & n \leq 1
\end{array}\right.\right. \tag{1}\\
& y[n-N]=\left\{\begin{array}{cc}
x[n-N] & \begin{array}{cc}
n-N \geq 1 \\
n-N=0
\end{array} \\
0 & (1) \neq(2) \\
x(n-N+1] & n-N \leq-1
\end{array}\right. \\
& \hline \text { Time-Variant }
\end{align*}
$$

3.) Linear?

$$
\begin{align*}
& \alpha_{1} x_{1}+\alpha_{2} x_{2}=x_{3} \xrightarrow{s_{s} s}\left\{\begin{array}{cc}
x_{3}[n] & n \geq 1 \\
0 & n=0 \\
x_{3}[n+1] & n \leq 1
\end{array}=\left\{\begin{array}{cc}
\alpha_{1} x_{1}(n]+\alpha_{2} x_{2}[n] & n \geq 1 \\
0 & n=0 \\
\alpha_{1} x_{1}[n+1]+\alpha_{2} x_{2}[n+1] & n \leq 1
\end{array}\right.\right. \tag{1.}
\end{align*}
$$

(1.) $=$ (2) \Rightarrow Linear
4.) Causal?
depends on a future value of the input for $n \leq 1 \Rightarrow$ not causal
5.) stable?

$$
\text { if }|X[n]| \leq B \text {, then }|y[n]|=\left\{\begin{array}{ll}
|x[n]| & n \geq 1 \\
101 & n=0 \\
|x[n]| & n \leq 1
\end{array} \leq\left\{\begin{array}{l}
B \\
0 \\
B
\end{array} \leq B\right.\right.
$$

\Rightarrow stable
$\left.f_{1}\right) y[n]=\left\{\begin{array}{cc}x[n] & n \geqslant 1 \\ 0 & n=0 \\ x[n] & n \leq-1\end{array}\right.$
1.) memoryless?
only depends on current value of input \Rightarrow memoryless
2.) Time-Invariant?

$$
\begin{align*}
& \text { Tine-Invariant? } \tag{1}\\
& x[n-N]=
\end{align*} x_{1}[n] \xrightarrow{\text { sve }}\left\{\begin{array}{ll}
x_{1}(n] & n \geq 1 \tag{2}\\
0 & n=0 \\
x_{1}(n] & n \leq y
\end{array}=\left\{\begin{array}{cc}
x[n-N] & n \geq 1 \\
0 & n=0 \\
x[n-N] & n \leq 1
\end{array}, \begin{array}{ll}
n[n-N] & =\left\{\begin{array}{cc}
x[n-N] & n-N \geq 1 \\
0 & n-N=0 \\
x[n-N] & n-N \leq-1
\end{array}\right.
\end{array}\right.\right.
$$

(1.) $\neq(2) \Rightarrow$ Time-Variant
3.) Linear?

$$
\begin{aligned}
& \begin{array}{l}
\text { Linear? } \\
\alpha_{1} x_{1}+\alpha_{2} x_{2}
\end{array}=x_{3} \xrightarrow{\text { s.s }}\left\{\begin{array}{cc}
x_{3}[n], & n \geq 1 \\
0, & n=0 \\
x_{3}[n], & n \leq-1
\end{array}=\left\{\begin{array}{cc}
\alpha_{1} x_{1}[n]+\alpha_{2} x_{2}[n], & n \geqslant 1 \\
0 & n=0 \\
\alpha_{1} x_{1}[n]+\alpha_{2} x_{2}[n], & n \leq-1
\end{array}\right.\right.
\end{aligned}
$$

(1.) $=$ (2) \Rightarrow Linear
4.) Causal?
output doesn't depend on future values of input \Rightarrow Causal
5.) Stable?
if $|x[n]| \leq B$, then $|y[n]|=\left\{\begin{array}{ll}|x[n]| & n \geq 1 \\ 10 n & n=0 \\ |x[n]| & n \leq-1\end{array} \leq\left\{\begin{array}{l}B \\ 0 \\ B\end{array} \leq B\right.\right.$
\Rightarrow Stable
g.) $y[n]=x[4 n+1]$
1.) Memoryless?.
output doesint depend only on the current input \Rightarrow has memory
2.) Time - Invariant?

$$
\begin{align*}
& \text { Time-Invariant! } \\
& x[n-N]=x_{1}[n] \xrightarrow{\text { sys }} x_{1}[4 n+1]=x[(4 n+1)-N]=x[4 n+1-N] \tag{2}\\
& y[n-N]=x[4(n-N)+1]=x[4 n-4 N+1](2)
\end{align*}
$$

(1.) \neq (2) \Rightarrow Time-Variant
3.) Linear?

$$
\begin{align*}
& \alpha_{1} X_{1}+\alpha_{2} X_{2} \Rightarrow X_{3}[n] \xrightarrow{s y_{y} s} X_{3}[4 n+1]=\alpha_{1} X_{1}[4 n+1]+\alpha_{2} X_{2}[4 n+1] \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& x_{2} \xrightarrow[M]{\text { M }_{2}} x_{2}\left[u_{n}+1\right] \xrightarrow{\alpha_{2}} x_{1} \rightarrow x_{1} \\
& \text { (1.) }=\text { (2) } \Rightarrow \text { Linear }
\end{aligned}
$$

4.) Causal?
output depends on a future value of the input \Rightarrow not causal
5.) Stable?
if $|x[n]| \leq B$, then $|y[n]|=|\times[4 n+1]| \leq B$
\Rightarrow Stable
Question 37

$$
\delta[n] \xrightarrow[L T I]{\text { system }} 2^{n} e^{-j n} u[n-1]
$$

1.) $x[n]=\delta[n-1] \xrightarrow{\text { sys }} y[n]=$?
because system is Time-Invariant $x[n-N] \xrightarrow{\text { Sys }} y[n-N]$

$$
y[n-1]=2^{n-1} e^{-j(n-1)} u[n-2]
$$

2.)

$$
\begin{aligned}
x(n) & =u[n]-u[n-2] \\
& =\delta[n]+\delta[n-1]
\end{aligned}
$$

use linearity and time invariance to say

$$
y[n]=2^{n} e^{-j n} u[n-1]+2^{n-1} e^{-j(n-1)} u[n-2]
$$

Question 38
1.30)
a.)

$$
\begin{aligned}
& y(t)=x(t-4) \\
& \text { let } t^{\prime}=t-4 \Rightarrow t=t^{\prime}+4 \\
& x(t)=y\left(t^{\prime}+4\right)
\end{aligned}
$$

\Rightarrow invertible with $x(t)=y(t+4)$
b.) $y(t)=\cos (x[t])$
$X(t)=\cos ^{-1}(y(t))$, but cosine is periodic with period 2π

$$
\begin{aligned}
& x_{1}(t)=x(t) \\
& x_{2}(t)=x(t)+2 \pi
\end{aligned} \quad \xrightarrow{\text { sis }} \quad \cos (x(t))
$$

different input produced the same output \Rightarrow not invertible
C.)
$y[n]=n x[n]$
$x[n]=\frac{y[n]}{n}$ unable to reconstruct input at index O
$\delta[n] \xrightarrow{\text { iss }} 0 \Rightarrow$ not invertible
$2 \delta[n] \xrightarrow{\text { sss }} 0$
e.)

$$
y[n]=\left\{\begin{array}{cc}
x[n-1] & n \geq 1 \\
0 & n=0 \\
x[n] & n \leq-1
\end{array} \rightarrow \begin{array}{l}
x[n]= \begin{cases}y[n+1], & n \geq 0 \\
y[n], & n \leq-1\end{cases} \\
\text { Invertible }
\end{array}\right.
$$

Question 39
1.30)
f.) $y[n]=x[n] x[n-1]$
because the system multiplies the input with a lime delayed version of the input, the ability to determine the sign ot the input is lost

$$
\begin{aligned}
& x[n] \xrightarrow{s N} x[n] \times[n-1] \\
- & x[n] \xrightarrow{s n}(-x[n])(-x[n-1)=x[n] \times[n-1] \\
\Rightarrow & \text { not invertible }
\end{aligned}
$$

g.)

$$
\begin{aligned}
& y[n]=x[1-n] \\
& n^{\prime}=1-n \Rightarrow n=1-n^{\prime} \\
& x\left[n^{\prime}\right]=y\left[1-n^{\prime}\right]
\end{aligned}
$$

invertible with $x[n]=y[1-n]$
j.)

$$
\begin{aligned}
& y(t)=\frac{d x(t)}{d t} \\
& x(t)=\int y(t) d t
\end{aligned}
$$

recall that integration results in an additional $+c$ term that can only be determined given initial conditions. This results from many functions having the same derivative $\frac{d}{d t}(x)=1$ and $\frac{d}{d t}(x+c)=1$ where $c \in \mathbb{R}$ \Rightarrow not invertible
n.)

$$
\begin{aligned}
& y[n]=\left\{\begin{array}{cc}
x[n / 2], & \text { neven } \\
0, & \text { node }
\end{array}\right. \\
& x[n]=y[2 n] \\
& \text { invertible }
\end{aligned}
$$

Question 40
1.31)
a.)

$$
\underbrace{1+\underbrace{}_{2}}_{-1} t \xrightarrow{X_{2}(t)=X_{1}(t)-X_{1}(t-2)}
$$

System is LTI \rightarrow tome shifts and linear combinations hold

b.)

$$
x_{3}(t)=x_{1}(t)+x_{1}(t+1)
$$

system is LTI so tine shifts + linear combinations hold

Question 41
1.43 a) Since the system is time-invariant,

$$
\begin{aligned}
x(t+T) & \longrightarrow y(t+T) \\
\text { and } x[n+N] & \longrightarrow y[n+N]
\end{aligned}
$$

Therefore, $y(t) / y[n]$ is also periodic with period T / N

Question 42 - Optional
1.62 a) True
b) False $\quad y_{1}(t)=x(t)+1$ both nonlinear, but $y_{2}(t)=x(t)-1$ linear when connected in series

$$
\begin{aligned}
& \text { c) } y_{1}[n]=\left\{\begin{array}{c}
x[n / 2], \text { neven } \\
0, n \text { odd }
\end{array}\right. \\
& y_{2}[n]=x[n]+\frac{1}{2} x[n-1]+\frac{1}{4} x[n-2] \\
& y_{3}[n]=x[2 n] \\
& y[n]=y_{1}[2 n]+\frac{1}{2} y_{1}[2 n-1]+\frac{1}{4} y_{1}[2 n-2] \\
& y[n]=x[n]+\frac{1}{2} x[n-1]+\frac{1}{4} x[n-2]
\end{aligned}
$$

