

The above signal graph for 8(c) is incorrect. The correct graph is given below.

Corrected Solution for Q8 part (c)

$$x[n] = \delta[n] - \delta[n-1] + u[n-2] - u[n+1]$$

•
$$x[n] = \sum_{k=-\infty}^{\infty} a_k S[n-k]$$

we know for some $l \in \mathbb{Z}$
 $x[k] = x[n] S[n-k]$
 $x[k] = \sum_{k=-\infty}^{\infty} a_k S[n-k] S[n-k]$
 $x[k] = \begin{cases} \alpha_k & k=k \\ 0 & l \neq k \end{cases}$
 $\Rightarrow [\alpha_k = x[k] \\ 0 & l \neq k \end{cases}$
 $\Rightarrow [\alpha_k = x[k] \\ 0 & l \neq k \end{cases}$
 $\Rightarrow [\alpha_k = x[k] \\ 0 & l \neq k \end{cases}$
 $\Rightarrow [\alpha_k = x[k] \\ (u[n-k] - u[n-k-1]) = \sum_{k=-\infty}^{\infty} x[k]u[n-k] - \sum_{k=-\infty}^{\infty} x[k]u[n-k-1]$
 $let l = k+l \quad k=k-l-l$
 $= \sum_{k=-\infty}^{\infty} x[k]u[n-k] - \sum_{k=-\infty}^{\infty} x[k-1]u[n-k]$
now redefine l with k
 $= \sum_{k=-\infty}^{\infty} x[k]u[n-k] - \sum_{k=-\infty}^{\infty} x[k-1]u[n-k]$
 $= \sum_{k=-\infty}^{\infty} x[k]u[n-k] - \sum_{k=-\infty}^{\infty} x[k-1]u[n-k]$
 $= \sum_{k=-\infty}^{\infty} [x[k] - x[k-1])u[n-k]$
 $= \sum_{k=-\infty}^{\infty} \beta_k u[n-k] \Rightarrow [\beta_k = x[k] - x[k-1]]$

• $X(t) = \int \alpha_s S(t-s) ds$ if we consider any realization of t, say r, we have $\chi(r) = \int_{-\infty}^{\infty} \alpha_s \, S(r-s) \, ds$ $\chi(r) = \alpha_s \int \mathcal{E}(r-s) \, ds$ $\chi(r) = \propto_s \cdot /$ $\chi(r) = \alpha_s$ $\Rightarrow \int \alpha_s = \chi(t)$

1.27)
a.):
$$y(t) = \chi(t,2) + \chi(2-t)$$

1.) Memoryless?
System has memoryly since it depends on past values of the
input - $\chi(t,2)$
2.) Time Invariant?
let $\chi_1(t) = \chi(t-t_0)$
 $\chi_1(t) \xrightarrow{-\gamma+t_m} \chi_1(t-2) + \chi_1(2-t) = \chi(t-2-t_0) + \chi(2-t-t_0)$
 $y(t-t_0) = \chi((t-t_0)-2) + \chi(2-(t-t_0)) = \chi(t-2-t_0) + \chi(2-t+t_0)$
since the two adjusts are different \Rightarrow Time Variant?
3.) Linear?
 $\chi_3(t) = \alpha_1\chi_1(t) + \alpha_2\chi_2(t)$
 $\chi_3(t) = \alpha_1\chi_1(t) + \alpha_2\chi_2(t)$
 $\chi_3(t) = \alpha_1\chi_1(t) + \alpha_2\chi_2(t-2) + \chi_3(2-t)$
 $= \alpha_1\chi_1(t-2) + \chi_2(2-t)] \propto_2$
 $= \alpha_1\chi_1(t-2) + \alpha_2\chi_2(t-2) + \alpha_3\chi_2(t-2) + \alpha_3\chi_3(t-2) + \alpha$

5.) Stable?
if the input
$$X(t)$$
 is bounded by B , that is $|X(t)| < B$,
then for $y(t) = x(t+2) + x(2+1)$, $|y(t)| \le |x(t+2)| + |x(2+1)| \le 2B$
for all $t \implies$ Stable
b.) $y(t) = [cos(3t)] \times (t)$
i.) Memory less?
The system is memoryless because it only depends on the current
Value of t
2.) Time-Invariant?
 $x_i(t) = x(t-t_0)$
 $x_i(t) \stackrel{sys}{=} [cos(3t)] x_i(t) = [cos(3t)] \times (t-t_0)$ \bigcirc
 $y(t-t_0) = [cos(3t-t_0)] \times (t-t_0) \oslash$
 $y(t-t_0) = [cos(3t)] \times (t-t_0) \oslash$
 $y(t-t_0) = [cos(3t)] \times (t-t_0) \oslash$
 $y(t-t_0) = [cos(3t)] \times (t-t_0) \oslash$
 $x_i(t) \stackrel{sys}{=} cos(3t) \times y(t) = cos(3t) \prec_i \times_i(t) + cos(3t) \prec_i \times_i(t) = x_i(t) \times_i(t) \bigoplus$
 $x_i(t) \stackrel{sys}{=} cos(3t) \times_i(t) \stackrel{sys}{=} = \alpha_i cos(3t) \times_i(t) + \alpha_{acce}(st) \times_i(t) \bigotimes$
 $y(t-t_0) = (cos(3t) \times_i(t) \stackrel{sys}{=} = \alpha_i cos(3t) \times_i(t) + \alpha_{acce}(st) \times_i(t) \bigotimes$
 $y(t-t_0) = (cos(3t) \times_i(t) \stackrel{sys}{=} = \alpha_i cos(3t) \times_i(t) + \alpha_{acce}(st) \times_i(t) \bigotimes$
 $y(t) \stackrel{sys}{=} system is Linear$
4.) $(cousal ?)$
the system is causal because it doesn't observe on any future values of time.
5.) if $|X(t)| < B$, then $|Y(t)| \le |cos(3t)||X(0)| \le B$
for all $t \implies$ System is Stable

.

C.)
$$y(t) = \int_{-\infty}^{2t} \chi(t) dt$$

() Memoryless?
System [has memory] because it depends on past values of time
(times - $\infty \cdot h \cdot t$)
2) Time-Invariant?
 $\chi_{1}(t) \xrightarrow{5+2}{5} \int_{0}^{2t} \chi_{1}(t) dt = \int_{0}^{2t} \chi(t-t_{0}) dt \xrightarrow{3} \int_{0}^{5+2t} \chi(s) ds$ (c)
 $\chi_{1}(t) \xrightarrow{5+2}{5} \int_{0}^{2t} \chi_{1}(t) dt = \int_{0}^{2t} \chi(t-t_{0}) dt \xrightarrow{3} \int_{0}^{5+2t} \chi(s) ds$ (c)
 $\chi_{1}(t) \xrightarrow{5+2}{5} \int_{0}^{2t} \chi_{1}(t) dt = \int_{0}^{2t} \chi(t-t_{0}) dt \xrightarrow{3} \int_{0}^{2t} \chi(s) ds$ (c)
 $\chi_{1}(t) \xrightarrow{5+2}{5} \int_{0}^{2t} \chi_{2}(t) dt \xrightarrow{2} \int_{0}^{2t} \chi(t) dt \xrightarrow{3} \chi(t) dt$
 $\chi_{2}(t) \xrightarrow{5+2}{5} \int_{0}^{2t} \chi_{2}(t) dt \xrightarrow{3} \int_{0}^{2t} \chi_{2}(t) dt \xrightarrow{3}$

5.) Stable?
if
$$|X[n]| \le B$$
, then $|Y[n]| = |X[-n]| \le B$
 $\Rightarrow [stable]$

4/15

b.)
$$\gamma[n] = \chi[n-2] - 2\chi[n-8]$$

1.) Memoryless?
idepends on past values of the input \Rightarrow [has memory]
2.) Time Invariant?
 $\chi[n-N] = \chi_1[n] \xrightarrow{qq} \chi_1[n-2] - 2\chi_1[n-8] = \chi[n-N-2] - 2\chi[n-N-8] (D)$
 $\gamma[n-N] = \chi_1[n] \xrightarrow{qq} \chi_1[n-2] - 2\chi_1[n-8] = \chi_1[n-N-8] (D)$
 $\gamma[n-N] = \chi_1[n] \xrightarrow{qq} \chi_1[n-2] - 2\chi_1[n-8] = \chi_2[n-8]$
 $g(\chi_1[n] + g(\chi_2[n]) = \chi_3[n] \xrightarrow{sq} \chi_3[n-2] - 2\chi_3[n-8]$
 $g(\chi_1[n-2] + g(\chi_2[n-2]) - 2(g(\chi_1[n-8]) + g(\chi_2[n-8]))$
 $\chi_1[n] \xrightarrow{sq} \chi_1[n-2] - 2\chi_2[n-8] \xrightarrow{qq} \chi_1[n-2] - 2(g(\chi_1[n-8]) + g(\chi_2[n-8]))$
 $\chi_1[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8] \xrightarrow{qq} \chi_2[n-8] (D)$
 $\chi_1[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8] \xrightarrow{qq} \chi_2[n-8] (D)$
 $\chi_1[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8] (D)$
 $\chi_2[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8] (D)$
 $\chi_2[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8] (D)$
 $\chi_2[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8] (D)$
 $\chi_1[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8] (D)$
 $\chi_1[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8] (D)$
 $\chi_2[n] \xrightarrow{sq} \chi_2[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8] (D)$
 $\chi_2[n] \xrightarrow{sq} \chi_2[n] \xrightarrow{sq} \chi_2[n-2] - 2\chi_2[n-8]$

output only depends on current value of input > [memoryless]

5/15

2.) Time - Invariant?

$$X[n-N] = X_{1}[n] \xrightarrow{sys} n X_{1}[n] = n X[n-N] (D)$$

$$Y[n-N] = (n-N) X[n-N] (2)$$

$$(D \neq (D) \Rightarrow [Time - Variant]$$
3.) Linear?

$$\alpha_{1} X_{1}[n] + \alpha_{2} X_{2}[n] = X_{3}[n] \xrightarrow{sys} n X_{3}[n] = n \alpha_{1} X_{1}[n] + n \alpha_{3} X_{2}[n] (D)$$

$$X_{1}[n] \xrightarrow{n} X_{2}[n] \xrightarrow{\alpha_{2}} (D) \Rightarrow \alpha_{1}'n X_{1}[n] + \alpha_{2} n X_{2}[n] (D)$$

$$X_{1}[n] \xrightarrow{n} X_{2}[n] \xrightarrow{\alpha_{2}} (D) \Rightarrow \alpha_{1}'n X_{1}[n] + \alpha_{2} n X_{2}[n] (D)$$

$$(D = (D) \Rightarrow [Linear]$$
4.) Causal?

$$doesn't depend on any future time input \Rightarrow [Causal]$$
5.) Stable?

$$if X[n] = 1 \leq 1$$
, $Y[n] = n \cdot 1 = n$ which doesn't have a bound

$$(1,28.)$$

$$(n) = \begin{cases} x[n] & n \ge 1 \\ 0 & n = 0 \\ x[n+1] & n \le -1 \end{cases}$$

1.) Memoryless? output depends on a future value of the input =) Thas memory 2.) Time - Invariant? $X[n-N] = X_{i}[n] \xrightarrow{sys} \begin{cases} X_{i}[n] & n \ge 1 \\ 0 & n = 0 \end{cases} = \begin{cases} X[n-N] & n \ge 0 \\ 0 & n = 0 \\ X_{i}[n+1] & n \le 1 \end{cases} \xrightarrow{n \le 1} \begin{cases} X[n-N] & n \ge 0 \\ 0 & n = 0 \\ X_{i}[n+1-N] & n \le 1 \end{cases}$ $\gamma[n-N] = \begin{cases} x[n-N] & n-N \ge 1 \\ n-N=0 (2) \\ x[n-N+1] & n-N \le -1 \end{cases} \qquad (D \neq (2) \\ \Rightarrow Time-Variant$

3.) Linear?

$$a_{i,X_{1}+d_{b},X_{2}} = X_{3} \xrightarrow{L_{YS}} \begin{cases} X_{3}[n] & n \ge 1 \\ n \ge 0 \\ X_{3}[nii] & n \le 1 \end{cases} = \begin{cases} a_{i,X_{1}}[n] + a_{i,X_{2}}[n] & n \ge 1 \\ a_{i,X_{1}}[ni] + a_{i,X_{2}}[nii] & n \le 1 \\ n \le 1 \end{cases} \end{cases}$$

$$x_{1}[n] \xrightarrow{L_{1}} \begin{cases} X_{1}[n] & n \ge 1 \\ N_{1}[ni] & n \le 1 \\ N_{2}[ni] & n \le 1 \end{cases} \xrightarrow{R_{2}} \begin{cases} X_{1}[ni] & n \ge 1 \\ N_{1}[ni] & n \le 1 \\ N_{2}[ni] & n \le 1 \\ N_{2}[ni] & n \le 1 \end{cases} \xrightarrow{R_{2}} \begin{cases} X_{1}[ni] & n \ge 1 \\ N_{1}[ni] & n \le 1 \\ N_{2}[ni] & n \le 1 \\ N_{2}[ni] & n \le 1 \end{cases} \xrightarrow{R_{2}} \begin{cases} X_{1}[ni] & n \ge 1 \\ N_{2}[ni] & n \le 1 \end{cases} \xrightarrow{R_{2}} \begin{cases} X_{1}[ni] & n \ge 1 \\ N_{2}[ni] & n$$

.

53

3) Linear?

$$a_{1}^{N} + a_{2}^{N} \chi_{2} = \chi_{3} \xrightarrow{free} \begin{cases} K_{0}[n] & n \ge 1 \\ n \ge 0 \\ K_{0}[n] & n \ge -1 \end{cases} = \begin{cases} a_{1}^{N} K_{0}[n] & n \ge 1 \\ 0 & n \ge 0 \\ a_{1}^{N} K_{1}(n] & n \ge 1 \\ 0 & n \ge 0 \\ a_{1}^{N} K_{1}(n] & n \ge 1 \\ 0 & n \ge 0 \\ a_{1}^{N} K_{1}(n] & n \ge 1 \\ 0 & n \ge 0 \\ a_{2}^{N} K_{1}(n] & n \ge 1 \\ 0 & n \ge 0 \\ a_{1}^{N} K_{1}(n] & n \ge 1 \\ 0 & n \ge 0 \\ a_{2}^{N} K_{1}(n] & n \ge 1 \\ a_{2}^{N} K_{1}(n] & a_{2}^{N} K_{1}(n] \\ a_{2}^{N} K_{1}(n] & a_{2}^{N} K_{1}(n] \\ a_{2}^{N} K_{1}(n] & a_{2}^{N} K_{2}(n] \\ a_{2}^{N} K_{1}(n) \\ a_{2}^{N} K_{1}(n) \\ a_{2}^{N} K_{2}(n) \\ a_{2}^{N} K_{1}(n) \\ a_{2}^{N} K_{2}(n) \\ a_{2}^{N} K_{2}($$

1.30)
a.)
$$y(t) = x(t-4)$$

 $let t' = t-4 \implies t = t'+4$
 $x(t) = y(t'+4)$
 $\implies [invertible with x(t) = y(t+4)]$

b)
$$\gamma(t) = \cos(x(t))$$

 $X(t) = \cos(x(t))$, but cosine is periodic with period 2π
 $x_{i}(t) = x(t)$ $\xrightarrow{y_{i}}$ $\cos(x(t))$
 $x_{2}(t) = x(t) + 2\pi$ $\cos(x(t)) = \cos(x(t))$
 $different input produced the same output => not invertible)$
C.) $\gamma(n] = n \times [n]$
 $x(n] = \frac{\gamma(n)}{n}$ imable to reconstruct input at index O
 $S[n] \xrightarrow{y_{i}} O => not invertible$
 $2S[n] \xrightarrow{y_{i}} O => not invertible$
C.) $\gamma(n] = (x[n-1] n \ge 1)$
 $\gamma(n] = (x[n-1] n \ge 1)$
 $\sum_{i=1}^{N} (n \ge 1)$

1.30)
f.)
$$y[n] = x[n] x[n-1]$$

because the system multiplies the input with a time delayed
version of the input, the ability to determine the sign of the
input is lost
 $x[n] \xrightarrow{sys} x[n] x[n-1]$
 $- x[n] \xrightarrow{sys} (-x[n])(-x[n-1]) = x[n] x[n-1]$
 $= \sum [not invertible]$

· · ·

. .