Question 13

$$
f(t)=\left\{\begin{array}{ll}
2, & -1 \leq t<0 \\
1, & 0 \leq t<3 \\
0, & \text { else }
\end{array} \quad g(t)=\left\{\begin{array}{cl}
3+t, & -2 \leq t<0 \\
3, & 0 \leq t<2 \\
0, & \text { else }
\end{array}\right.\right.
$$

$$
g(1-t)=\left\{\begin{array}{cl}
4-t, & 1<t \leq 3 \\
3, & -1<t \leq 1 \\
0, & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} g(1-t) f(t) d t \quad g(1-t) f(t)= \begin{cases}3 \cdot 2, & -1<t<0 \\
3 \cdot 1, & 0 \leq t \leq 1 \\
1 \cdot(4-t), & 1<t<3\end{cases} \\
& =\int_{-1}^{0} 6 d t+\int_{0}^{1} 3 d t+\int_{1}^{1}(4-t) d t \\
& =\left.6 t\right|_{t=-1} ^{t=0}+\left.3 t\right|_{t=0} ^{t}+\left[4 t-\frac{1}{2} t^{2}\right]_{t=1}^{t=3} \\
& =6+3+12-\frac{9}{2}-4+\frac{1}{2}=13
\end{aligned}
$$

Question 14

$$
f(t)=\left\{\begin{array}{cc}
-2, & t \geq 1 \\
0, & \text { else }
\end{array}\right.
$$

$$
\begin{aligned}
& h(\omega)=\int_{-\infty}^{\infty} e^{-a t-j b t} f(t) e^{-j \omega t} d t \quad \text { for } a>0 \\
& \\
& =-2 \int_{1}^{\infty} e^{-a t-j b t-j \omega t} e^{\infty} d t=-2 \int_{1}^{\infty} e^{(-a-j b) t(-j \omega) t} d t \\
& =-2 \int_{1}^{\infty} e^{(-a-j b-j \omega) t} d t
\end{aligned}
$$

$$
=\frac{-2}{-a-j(b+w)}\left[e^{(-a-j(b+w)) t}\right]_{t=1}^{\lim _{t \rightarrow \infty}}
$$

* since a is strictly
positive the limit of positive, the limit of this expression as $t \rightarrow \infty$ is 0

$$
=\frac{-2}{-a-j(b+w)}\left[0-e^{-a-j(b+w)}\right]=\frac{-2 e^{-a-j(b+w)}}{a+j(b+w)}
$$

Question 15

$$
\cos (\alpha)=0.2=\frac{1}{5} \quad \sin (\beta)=-0.4=\frac{-2}{5}
$$

$$
\begin{aligned}
& x^{2}+(-2)^{2}=5^{2} \rightarrow x=\sqrt{21} \\
& 1^{2}+y^{2}=5^{2} \rightarrow y=\sqrt{24}=2 \sqrt{6} \\
& \sin (\alpha)=\frac{-2 \sqrt{6}}{5} \quad \cos (\beta)=-\frac{\sqrt{21}}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
& =\left(\frac{1}{5}\right)\left(\frac{-\sqrt{21}}{5}\right)-\left(\frac{-2 \sqrt{6}}{5}\right)\left(-\frac{2}{5}\right)=\frac{-\sqrt{21}-4 \sqrt{6}}{5}
\end{aligned}
$$

$$
\begin{aligned}
\sin (\alpha-\beta) & =\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
= & \left(\frac{-2 \sqrt{6}}{5}\right)\left(-\frac{\sqrt{21}}{5}\right)-\left(\frac{1}{5}\right)\left(-\frac{2}{5}\right)=\frac{6 \sqrt{14}+2}{25}
\end{aligned}
$$

Question 16
a)

$$
\begin{aligned}
& \sqrt{3}+\sqrt{3} j=e^{a+b j} \\
& \sqrt{3}+\sqrt{3} j=e^{a} e^{b j} \\
& \sqrt{3}+\sqrt{3} j=e^{a}(\cos (b)+j \sin (b))
\end{aligned}
$$

* compare real + imaginary parts

Real

$$
\begin{aligned}
& \sqrt{3}=e^{a} \cos (b) \frac{\operatorname{Imaginany}}{\sqrt{3}}=e^{a} \sin (b) \\
& \operatorname{soc} \cos (b)=\sin (b) \rightarrow b=\frac{\pi}{4} \\
& e^{a}=\frac{\sqrt{3}}{\cos \left(\frac{\pi}{4}\right)}>e^{a}=\sqrt{6} \\
&=\sqrt{3} \sqrt{2} a=\ln e^{\prime}=\ln \sqrt{6} \\
& a=\frac{1}{2} \ln 6
\end{aligned}
$$

$$
\begin{array}{ll}
\text { b) } e^{2+\frac{5 \pi}{3} j}=c+d j & c=e^{2} \cos \left(\frac{5 \pi}{3}\right) \\
e^{2} e^{\frac{5 \pi}{3} j} & c=\frac{1}{2} e^{2} \\
=e^{2}\left(\cos \left(\frac{5 \pi}{3}\right)+j \sin \left(\frac{5 \pi}{3}\right)\right) & d=e^{2} \sin \left(\frac{5 \pi}{3}\right) \\
& d=-\frac{e^{2} \sqrt{3}}{2}
\end{array}
$$

Question 17

$$
\begin{aligned}
& x \rightarrow \begin{array}{c}
A \times 3 \\
\text { matrix }
\end{array} \rightarrow y \quad y=A x \\
& x_{1} \rightarrow y_{1} \quad x_{2} \longrightarrow y_{2} \quad x_{3} \longrightarrow y_{3} \\
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
2 \\
-1 \\
-3
\end{array}\right]} \\
& x_{4}=\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]=\underset{x_{1}}{2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}+\underset{x_{2}}{\left[\begin{array}{l}
{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}
\end{array}+4\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right.}
\end{aligned}
$$

* Since we know the system is linear:

$$
\begin{aligned}
& 2 x_{1}+2 x_{2}+4 x_{3} \\
& 2\left[\begin{array}{c}
1 \\
2 \\
3
\end{array}\right] \\
& y_{1} {\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]+4\left[\begin{array}{c}
2 \\
-1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
16 \\
-4 \\
-4
\end{array}\right] }
\end{aligned}
$$

Question 18

$$
\text { (1.21 on page } 59 \text {) }
$$

$$
\text { c) } x(2 t+1)=x(2(t+1 / 2))
$$

d) $x\left(4-\frac{1}{2} t\right)=x\left(-\frac{1}{2}(t-8)\right)$ * time reverse ord sci by 2 ,

Question 19

d) $x[3 n+1]$
$n=-2 \rightarrow x[-5]=0$
 $n=1 \rightarrow x[4]=0$
g) $\frac{1}{2} x[n]+\frac{1}{2}(-1)^{n} x[n]$
$=\left\{\begin{array}{cc}x[n], & n \text { even } \\ 0, & n \text { odd }\end{array}\right.$
h) $x\left[(n-1)^{2}\right] \rightarrow n=-2 \rightarrow x[9]=0$
$\begin{aligned} n & =-1 \rightarrow x[4]=0 \\ n & =0 \rightarrow x[1]=1\end{aligned}$

$$
n=-1 \rightarrow x[4]=0
$$

$$
n=1 \rightarrow x[0]=1
$$

$$
\begin{aligned}
& n=2 \rightarrow x[1]=1 \\
& n=2 \rightarrow x[1]
\end{aligned}
$$

$$
n=3 \rightarrow x[4]=0
$$

a) $x[n-4]$

Question 20 linear operations.

$$
X(t)=a X_{1}(t)+b X_{2}(t)
$$

- time shift

Let $Y(t)=X\left(t-t_{0}\right) \longrightarrow Y_{1}(t)=X_{1}\left(t-t_{0}\right)$ and $Y_{2}(t)=X_{2}\left(t-t_{0}\right)$
so $Y(t)=a X\left(t-t_{0}\right)+b X_{2}\left(t-t_{0}\right)$

$$
a Y_{1}(t)+b Y_{2}(t)=a X_{1}\left(t-t_{0}\right)+b X_{2}\left(t-t_{0}\right)
$$

these are the same, so the time shift operation is lInear

- time reversal

Let $Z(t)=X(-t) \rightarrow Z_{1}(t)=X_{1}(-t)$ and $Z_{2}(t)=X_{2}(-t)$
so $Z(t)=a X_{1}(-t)+b X_{2}(-t)$

$$
a Z_{1}(t)+b Z_{2}(t)=a X_{1}(-t)+b X_{2}(-t)
$$

same, so time reversal is a linear operation

- time scaling

Let $G(t)=X(\alpha t) \rightarrow G_{1}(t)=X_{1}(\alpha t)$ and $G_{2}(t)=X_{2}(\alpha t)$
so $G(t)=a X_{1}(\alpha t)+b X_{2}(\alpha t)>$ same, so time scaling $a G_{1}(t)+b G_{2}(t)=a X_{1}(\alpha t)+b X_{2}(\alpha t)$ is a linear operation

Question $20 \quad(1.25$ on p. 61)
a) $x(t)=3 \cos \left(4 t+\frac{\pi}{3}\right)$
periodic $\rightarrow 3 \cos \left(4(t+T)+\frac{\pi}{3}\right)$

$$
\begin{aligned}
& =3 \cos \left(4 t+4 T+\frac{\pi}{3}\right) \\
& 4 T=2 \pi k \\
& \quad T=\frac{\pi}{2} k, \quad k \in \mathbb{Z} \text { (set of all integers) }
\end{aligned}
$$

Q20
b) $x(t)=e^{j(\pi t-1)}$
periodic $\rightarrow e^{j(\pi(t+T)-1)}$

$$
\begin{aligned}
& =e^{j(\pi t+\pi T-1)} \\
\pi T & =2 \pi k \\
T & =2 k, k \in \mathbb{Z}
\end{aligned}
$$

c) $x(t)=\left[\cos \left(2 t-\frac{\pi}{3}\right)\right]^{2}$
periodic.

$$
\begin{aligned}
& \cos ^{2}\left(2(t+T)-\frac{\pi}{3}\right)=\frac{1}{2}+\frac{1}{2} \cos \left(2\left(2 t+2 T+\frac{\pi}{3}\right)\right) \\
& =\frac{1}{2}+\frac{1}{2} \cos \left(4 t+4 T+\frac{2 \pi}{3}\right) \\
& 4 T=2 \pi K \\
& T=\frac{\pi}{2} K \quad K \in \mathbb{Z}
\end{aligned}
$$

