## ECE 301-003, Homework #2 (CRN: 11474) Due date: Wednesday 1/24/2024

https://engineering.purdue.edu/~chihw/24ECE301S/24ECE301S.html

Review of calculus and arithmetics:

Question 13: [Basic] Consider two functions f(t) and g(t) described as follows.

$$f(t) = \begin{cases} 2 & \text{if } -1 \le t < 0\\ 1 & \text{if } 0 \le t < 3\\ 0 & \text{otherwise} \end{cases}$$
(1)

$$g(t) = \begin{cases} 3+t & \text{if } -2 \le t < 0\\ 3 & \text{if } 0 \le t < 2\\ 0 & \text{otherwise} \end{cases}$$
(2)

Find the value of  $\int_{-\infty}^{\infty} g(1-t)f(t)dt$ .

Question 14: [Basic] Consider a function f(t) such that f(t) = -2 if  $t \ge 1$  and f(t) = 0 otherwise. Find the expression of

$$h(\omega) = \int_{-\infty}^{\infty} e^{-at-jbt} f(t) e^{-j\omega t} dt,$$
(3)

where a is a constant that is strictly larger than zero.

Question 15: [Basic] Review of Trigonometry: Suppose  $-\pi/2 \le \alpha \le 0$  and  $\pi \le \beta \le \frac{3\pi}{2}$ , and

$$\cos(\alpha) = 0.2$$
$$\sin(\beta) = -0.4.$$

Find the values of  $\cos(\alpha + \beta)$  and  $\sin(\alpha - \beta)$ .

Question 16: [Basic] Review of complex numbers: Let j be the imaginary number, i.e.,  $j^2 = -1$ . Suppose

$$\sqrt{3} + \sqrt{3}j = e^{a+bj}$$
$$e^{2+\frac{5\pi}{3}j} = c + dj.$$

Find the values of a, b, c, and d.

## The following questions are about the new materials covered in Week 1.

Question 17: [Basic] Suppose A is a 3 by 3 matrix. Consider a linear system that outputs y = Ax where  $x \in \mathbb{R}^3$  is the input signal. To be more precise, x is a column vector of dimensional 3, and  $y \in \mathbb{R}^3$  is the output column vector of dimension 3. Further assume that we know that

- When  $x_1 = (1, 0, 0)^T$ , the output is  $y_1 = (1, 2, 3)^T$ .
- When  $x_2 = (0, 1, 0)^T$ , the output is  $y_2 = (3, -2, 1)^T$ .
- When  $x_3 = (0, 0, 1)^T$ , the output is  $y_3 = (2, -1, -3)^T$ .

What is the output y = Ax when the input is  $x = (2, 2, 4)^T$ ? (Hint: Use the linearity of the system.)

Question 18: [Basic] Textbook p. 59, Problem 1.21. (a)-(d).



Figure P1.21

**1.21.** A continuous-time signal x(t) is shown in Figure P1.21. Sketch and label carefully each of the following signals:

(a) x(t-1) (b) x(2-t) (c) x(2t+1) (d)  $x(4-\frac{t}{2})$ 

Question 19: [Basic] Textbook p. 59, Problem 1.22. (a), (d), (g), (h).





1.22. A discrete-time signal is shown in Figure P1.22. Sketch and label carefully each of the following signals:
(a) x[n-4]
(b) x[3n+1]
(c) 1/2 x[n] + 1/2 (-1)<sup>n</sup> x[n]
(c) x[(n-1)<sup>2</sup>]

Question 20: [Advanced] In class, we have shown how to construct a new signal y(t) from an existing signal x(t) by time shift, time reversal and time scaling. Namely,  $y(t) = x(t-t_0)$ , or y(t) = x(-t), or  $y(t) = x(\alpha t)$ . These time transformations can be considered as "systems" as well since it takes x(t) as input and outputs a signal y(t). Show that these three different time transformation systems are *linear*.

Question 21: [Basic] Textbook p. 61, Problem 1.25 (a)–(c).

- 1.25. Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine its fundamental period.
- (a)  $x(t) = 3\cos(4t + \frac{\pi}{3})$  (b)  $x(t) = e^{j(\pi t 1)}$  (c)  $x(t) = [\cos(2t \frac{\pi}{3})]^2$