ECE 301-003, Homework \#1 (CRN: 11474)

Due date: Wednesday $1 / 17 / 2024$
https://engineering.purdue.edu/~chihw/24ECE301S/24ECE301S.html

Review of calculus and arithmetics:
Question 1: Compute the values of the following integrals. You can leave your answers in the form of trigonometric function values such as " $\cos (1.35)$." There is no need to use calculator to find the numerical value of the final answer.

$$
\begin{aligned}
& \int_{2 \pi}^{3 \pi} \sin \left(2 \omega+0.5 \pi+\frac{\pi \omega}{2}\right) d \omega \\
& \int_{0}^{3 \pi} \cos (\pi / 3-u) d u \\
& \int_{y=1}^{2} \int_{x=0}^{2.5} \cos \left(\frac{3 x \pi}{4}+\frac{y \pi}{3}\right) d x d y
\end{aligned}
$$

Question 2: Compute the values of the following integrals.

$$
\begin{aligned}
& \int_{-2 \pi}^{4 \pi} 2^{-|t-\pi|} e^{-j \frac{\pi}{2} t} d t \\
& \int_{-2}^{3} \omega \cos \left(\frac{\pi}{3} \omega\right) d \omega \\
& \int_{-3}^{3}(|z-2|) e^{j 2 \pi z} d z
\end{aligned}
$$

Question 3: Compute the values of the following integrals.

$$
\begin{aligned}
& \int_{1}^{4}|\cos (\omega)-j(2 \omega+1)|^{2} d \omega \\
& \int_{3}^{5} \int_{3}^{4}\left|\frac{1}{(2-t)+j 2 \sqrt{2 t}}\right|^{2} d s d t
\end{aligned}
$$

Question 4: Compute the expressions of the following integrals.

$$
\begin{gathered}
\int_{0}^{\frac{2}{\omega}}(t+2 s) e^{-j \omega \pi(2 t+s)} d s \\
\text { and } \quad \\
\frac{1}{T}\left(\int_{-T}^{T / 2}\left(\frac{T}{2}-t\right) e^{j \frac{2 k \pi}{T} t} d t+\int_{T / 2}^{2 T}\left(t-\frac{T}{2}\right) e^{j \frac{2 k \pi}{T} t} d t\right),
\end{gathered}
$$

where k is an integer.

Question 5: Suppose $f(s)=s^{2}+2 s-3$. Define $g(t)=f(1-t)$. Compute the following values.

$$
\begin{gathered}
\quad g(3) \\
\int_{2}^{5} g(1+2 s) d s \\
\text { and } \int_{0}^{3} g^{\prime}(s) e^{j \pi s} d s,
\end{gathered}
$$

where $g^{\prime}(t)$ is the first order derivative of $g(t)$.

Question 6: Suppose $f(t)=|1-t|$. Define

$$
g(t)=\int_{t-1}^{t+2} f(s) d s
$$

Compute the following values.

$$
\begin{gathered}
g(3) \\
\int_{1}^{4} g(s) d s \\
\text { and } \int_{-1}^{1} f(s) g(1-s) d s .
\end{gathered}
$$

Question 7: Consider a discrete series $f[n]=2 n+1$. Define

$$
g[n]=\sum_{k=-2}^{1} k f[k-n]
$$

Compute the following values.

$$
\begin{gathered}
g[3] \\
\sum_{k=-2}^{1} 4^{k} g[k] \\
\sum_{k=3}^{\infty} 3^{-k-1} g[k+1] \\
\text { and } \sum_{k=-\infty}^{-2} 2^{k} g[k]
\end{gathered}
$$

Hint: If $|r|<1$, then we have the following formulas for computing the sum of a geometric sequence.

$$
\begin{aligned}
\sum_{k=1}^{\infty} a r^{k-1} & =\frac{a}{1-r} \\
\sum_{k=1}^{\infty} k a r^{k-1} & =\frac{a}{(1-r)^{2}}
\end{aligned}
$$

Question 8: Consider a discrete series $f[n]=3 n-1$. Define

$$
\begin{equation*}
g[n]=\frac{1}{2}(f[n]-f[-n]) . \tag{1}
\end{equation*}
$$

Compute the following values.

$$
\begin{gathered}
g[3] \\
\text { and } \sum_{k=-1}^{1} f[k] g[2-k]
\end{gathered}
$$

Question 9: Consider a discrete series such that $f[n]=1-j \cdot|n|$ if $-2 \leq n \leq 1$ and $f[n]=0$ otherwise. Define

$$
g[n]=\sum_{k=-\infty}^{\infty} f[n-k] 2^{|k|}
$$

Compute $g[-3]$. Find the expression of $g[n]$.

Define

$$
h[n]=\sum_{k=-\infty}^{\infty} f[k] 2^{|n-k|} .
$$

Compute $h[-3]$. Find the expression of $h[n]$.

Question 10: Suppose $f(t)=\cos (0.5 \pi t-\pi)$. A discrete series $g[n]$ is defined as

$$
g[n]=f(6 n)
$$

Find the values of $g[0], g[1], g[2], g[3]$. [Optional] Find the expression of $g[n]$ for general n values.

Question 11: Suppose $f[n]=(2 n-1)^{-2}$. A function $g(t)$ is defined as

$$
g(t)=e^{-j 2 t}(\cos (t) f[3]+j \sin (t) f[-1])
$$

Compute the following value

$$
\int_{-\pi / 2}^{\pi}|g(s)|^{2} d s
$$

Question 12: Compute the following partial fractions:

$$
\frac{1}{5-\omega^{2}-6 j \omega}=\frac{a}{b+c \cdot j \omega}+\frac{d}{e+f \cdot j \omega} .
$$

Namely, find the real-valued coefficients a, b, c, d, e, and f.
Compute the following partial fractions:

$$
\frac{1}{5-\omega^{2}-6 j \omega} \times \frac{3-2 j \omega}{1-j \omega}=\frac{a}{b+c \cdot j \omega}+\frac{d}{e+f \cdot j \omega}+\frac{g}{(b+c \cdot j \omega)^{2}} .
$$

Namely, find the real-valued coefficients a, b, c, d, e, f, and g.

