Purdue

Tips for making sure GradeScope can read your exam:

1. Make sure your name and PUID are clearly written at the top of every page, including any additional blank pages you use.
2. Write only on the front of the exam pages.
3. Add any additional pages used to the back of the exam before turning it in.
4. Ensure that all pages are facing the same direction.
5. Answer all questions in the area designated for that answer. Do not run over into the next question space.

Final Exam of EECE301, Prof. Wang's section
10:30am-12:30pm, Tuesday, April 30, 2024, WALC1055

1. Do not write answers on the back of pages!
2. After the exam ended, you will have 5 additional minutes to write down your name and Purdue ID on each of the pages.
3. If you need additional sheets to write down your answers, please let the instructor/TA know. We will hand out additional answer sheets then.
4. Enter your student ID number, and signature in the space provided on this page.
5. This is a closed book exam.
6. This exam contains multiple-choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have two hours to complete it. The students are suggested not spending too much time on a single question, and first working on those that you know how to solve.
7. If needed and requested by students, the instructor/TA will hand out loose sheets of paper for the rough work.
8. Neither calculators nor help sheets are allowed.

Name:

Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.

Signature:
Date:

Question 1: [23\%, Work-out question]

1. [1\%] What does the acronym AM-DSB stand for?

Prof. Wang wanted to transmit an AM-SSB signal. To that end, he wrote the following MATLAB code.

```
% Initialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read two different .wav files
[x1, f_sample, N]=audioread('x1.wav');
x1=x1';
[x2, f_sample, N]=audioread('x2.wav');
x2=x2';
% Step 0: Initialize several parameters
W_1=????;
W_2=4000*pi;
W_3=7000*pi;
W_4=????;
W_5=????;
W_6=????;
W_7=????;
```

\% Step 1: Make the signals band-limited.
$\mathrm{h}=1 /(\mathrm{pi} * \mathrm{t}) . *\left(\sin \left(\mathrm{~W} _1 * \mathrm{t}\right)\right)$;
x1_new=ece301conv(x1, h);
x2_new=ece301conv(x2, h);
\% Step 2: Multiply x1_new and x2_new with a sinusoidal wave.
$\mathrm{x} 1 _\mathrm{h}=\mathrm{x} 1 _$new. $* \cos \left(\mathrm{~W} _2 * \mathrm{t}\right)$;
x2_h=x2_new. *sin(W_3*t);
\% Step 3: Keep one of the two side bands
h_one $=1 /(\mathrm{pi} * \mathrm{t}) . * \sin \left(\mathrm{~W} _4 * \mathrm{t}\right) . * \cos \left(\mathrm{~W} _5 * \mathrm{t}\right)$;
h_two=1/(pi*t).*(sin(W_6*t)-sin((W_6-W_7)*t));
x1_sb=ece301conv(x1_h, h_one);

```
x2_sb=ece301conv(x2_h, h_two);
% Step 4: Create the transmitted signal
y=x1_sb+x2_sb;
audiowrite('y.wav', y, f_sample);
```

2. [3\%] Our goal is to transmit the lower-side band (LSB) of the signal. However, in order to preserve as much quality as possible, we would like to choose the largest possible W_{1} value. Question: What is the largest possible W_{1} value one can use in this MATLAB code without jeopardizing the sound quality.
3. [2\%] Assuming we use $W_{1}=2500 \pi$, which may or may not be the answer to the previous question. What is the bandwidth (Hz) occupied by the signal x2_h? Note that x 2 h is the signal after multiplying $\sin \left(W_{3} t\right)$.
4. [3\%] Continue from the previous sub-question. What would be the right values of W_{4} and W_{5} ? Please assume $W_{1}=2500 \pi$ when answering this question.
5. [4\%] Continue from the previous sub-question. What would be the right values of W_{6} and W_{7} ? Please assume $W_{1}=2500 \pi$ when answering this question.

Note that in this question, any W_{7} in a certain range will work. Please write down the range of W_{7} when answering this question. For example, your answer could be $2000 \pi \leq W_{7} \leq 4000 \pi$. If your answer of W_{7} is a single value, not a range, you will not receive full credit for this sub-question.

Assume that $W_{1}=2500 \pi$ is used to generate the AM-SSB-LSB transmission. A student tried to demodulate the output waveform "y.wav" by the following code.

```
% Initialization
duration=8;
f_sample=44100;
t=(((0-4)*f_sample+0.5):((duration-4)*f_sample-0.5))/f_sample;
% Read the .wav files
[y, f_sample, N]=audioread('y.wav');
y=y';
% Initialize several parameters
W_8=????;
W_9=2000*pi;
W_10=2500*pi;
W_11=????;
W_12=????;
W_13=????;
W_14=????;
```

\% Create a new low-pass filter.
h_M=1/(pi*t).*(sin(W_8*t));
\% We construct new BPFs
h_three=1/(pi*t).*sin(W_9*t).*cos (W_10*t);
h_four=1/(pi*t).*(sin(W_11*t)-sin(W_12*t));
\% demodulate signal 1
y11=ece301conv(y, h_three);
y1=y11.*cos(W_13*pi*t);
x1_hat=4*ece301conv(y1,h_M);
sound(x1_hat,f_sample)

```
% demodulate signal 2
y21=ece301conv(y, h_four);
y2=y21.*sin(W_14*t);
x2_hat=4*ece301conv(y2,h_M);
sound(x2_hat,f_sample)
```

6. [5\%] Continue from the previous questions. What should the values of W_8, W_11, W_12, W_13, and W_14 be in the MATLAB code?
7. [5\%] It turns out that the above MATLAB code is not written correctly and part of the end results do not sound right. Answer the following questions
(a) Is signal x1_new correctly/perfectly demodulated? If yes, then go to subquestion (d). If no, then continue answering the following sub-questions.
(b) Use 2 to 3 sentences to answer: what kind of problem does x1_new have, i.e., how does the problem impact the sound quality of "sound(x1_hat,f_sample)"?
(c) How can the MATLAB code be corrected so that the playback/demodulation can be successful?
(d) Is signal x2_new correctly/perfectly demodulated? If yes, then your answer to Q1.7 is complete. If no, then continue answering the following sub-questions.
(e) Use 2 to 3 sentences to answer: what kind of problem does $x 2 _n e w h a v e, ~ i . e .$, how does the problem impact the sound quality of "sound($x 2$ _hat,f_sample)"?
(f) How can the MATLAB code be corrected so that the playback/demodulation can be successful?

Hint: If you do not know the answers of Q1.2 to Q1.7, please simply draw the AMSSB modulation (using upper side band) and demodulation diagrams and mark carefully all the parameter values. You will receive 12 points for Q1.2 to Q1.7 if your system diagrams are correct and all parameter values are marked correctly.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 1.

Last Name: First Name:
Purdue ID:
This sheet is for Question 1.

Question 2: [10\%, Work-out question]
Consider a continuous time signal:

$$
\begin{equation*}
x(t)=\sin (5(t-0.2 \pi)) . \tag{1}
\end{equation*}
$$

We will then modulate this signal using AM. The resulting signal is

$$
\begin{equation*}
y(t)=x(t) \cos (1000 \pi t) \tag{2}
\end{equation*}
$$

Answer the following questions:

1. [1\%] What is the definition of "asynchronous AM demodulation." To put it in another way, what is the defining characteristic of whether an AM demodulation method is considered as synchronous or asynchronous.
2. [3\%] Plot $X(j \omega)$, the CTFT of $x(t)$, for the range of $-5 \pi \leq \omega \leq 5 \pi$. Hint: $\pi \approx 3.14$.
3. [3\%] Plot $Y(j \omega)$, the CTFT of $x(t)$, for the range of $-1005 \pi \leq \omega \leq 1005 \pi$. Please carefully mark the horizontal and vertical axes.
4. [3\%] If we demodulate the signal $y(t)$ by the asynchronous demodulation. Denote the final output by $\hat{x}(t)$. Plot $\hat{x}(t)$ for the range of $-0.4 \pi \leq t \leq 0.4 \pi$.
Hint: If you do not know the answer to this question, you can plot $y(t)$ for the range of $-0.4 \pi \leq t \leq 0.4 \pi$. You will receive 1.5 points if your answer is correct.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 2.
Last Name: \quad First Name: Purdue ID:

Question 3: [12\%, Work-out question]

1. [3\%] Consider a continuous time signal

$$
\begin{equation*}
x(t)=\cos (1.5 \pi t) \tag{3}
\end{equation*}
$$

We sample $x(t)$ with the sampling frequency 0.5 Hz and denote the sampled values by $x[n]$. Plot $x[n]$ for the range of $-4 \leq n \leq 4$.
2. [3\%] We use $x_{\mathrm{ZOH}}(t)$ to represent the reconstructed signal using the "zero-order hold" method. Plot $x_{\mathrm{ZOH}}(t)$ for the range of $-4 \leq t \leq 4$.
3. [3\%] We use $x_{\text {sinc }}(t)$ to represent the reconstructed signal using the optimal sincbased reconstruction. Plot $x_{\operatorname{sinc}}(t)$ for the range of $-4 \leq t \leq 4$.
4. [1.5\%] Continue from the previous question, which of the following eight signals are the "closest" to your $x_{\text {sinc }}(t)$ answer.
(a) $\cos (0.5 \pi t),(\mathrm{b}) \cos (\pi t)$, (c) $\cos (1.5 \pi t)$, (d) $\cos (2 \pi t)$, (e) $\sin (0.5 \pi t)$, (f) $\sin (\pi t)$, (g) $\sin (1.5 \pi t)$, and (h) $\sin (2 \pi t)$.

This is a multiple-choice question. There is no need to justify your answer.
5. [1.5\%] Continue from the previous questions. Is the reconstructed $x_{\text {sinc }}(t)$ signal identical to the original signal $x(t)$. It is a yes/no question. However, for this question, you must write down a couple of sentences to justify your answer. A correct answer with a wrong justification will not receive any point.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 3.

Question 4: [13\%, Work-out question]

1. [6\%] Consider a continuous time signal $x(t)=\frac{\sin (\pi t)}{\pi t}$. We sample $x(t)$ via impulse train sampling with sampling period 0.5 (unit: sec). Denote the final impulse-trainsampled signal by $x_{p}(t)$. Plot $x_{p}(t)$ for the range of $-2<t<2$.
Hint: If you do not know how to plot $x_{p}(t)$, you can plot $x(t)$ instead. You will receive 4 points if your answer is correct.
2. [4\%] Plot $X_{p}(j \omega)$, the CTFT of $x_{p}(t)$, for the range of $-5 \pi<\omega<5 \pi$;

Hint: If you do not know the answer to this question, you can solve the following question instead. Let

$$
\begin{equation*}
w(t)=\sin (3 t) *(\delta(t-1)+\delta(t-2)-\delta(t-4)) \tag{4}
\end{equation*}
$$

Find the expression of $w(t)$. There is no need to plot it. If your answer is correct, you will receive 3 points for this question.
3. [3\%] Define $y(t)=x_{p}(t) \cdot \cos (\pi t)$. Plot $Y(j \omega)$, the CTFT of $y(t)$, for the range of of $-5 \pi<\omega<5 \pi$. If you do not know how to solve this question, you can plot $y(t)$ for the range of $-2<t<2$. You will receive full credit for this sub-question if your answer is correct.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 4.

Question 5: [9\%, Work-out question]
Consider the following continuous time signal

$$
\begin{equation*}
x(t)=\sum_{k=1}^{4} \cos (3 k(-t-0.5)) \tag{5}
\end{equation*}
$$

Find the corresponding CTFS coefficients a_{k} of $x(t)$.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 5.

Question 6: [9\%, Work-out question]
Define the following two discrete-time signals:

$$
\begin{align*}
& x[n]=\sum_{k=1}^{3} 2^{-k} e^{j k^{-2} \pi n} \tag{6}\\
& h[n]=U[n-50]-U[n-100] \tag{7}
\end{align*}
$$

where $U[n]$ is the unit-step signal.
Find the expression of $y[n]=x[n] * h[n]$.
Hint 1: The following formula may be useful. If $r \neq 1$, then

$$
\begin{equation*}
\sum_{k=L}^{H} a \cdot r^{k}=\frac{a \cdot r^{L}\left(1-r^{H-L+1}\right)}{1-r} \tag{8}
\end{equation*}
$$

Hint 2: You can leave your answer to be something like $e^{j 0.78 \pi t} \frac{e^{-\pi} .56}{e^{2}-e^{j}}+e^{-j \pi t}$. There is no need to further simplify it.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 6.

Question 7: [9\%, Work-out question]
Consider two continuous-time signals $x(t)$ and $y(t)$ with their corresponding CTFT being $X(j \omega)$ and $Y(j \omega)$, respectively. We also know

$$
\begin{align*}
& X(j \omega)=\frac{1}{-2+j \omega} \tag{9}\\
& Y(j \omega)=\frac{-1}{2+j \omega} . \tag{10}
\end{align*}
$$

1. [2\%] We recognize that the relationship between $X(j \omega)$ and $Y(j \omega)$ is listed as one of the "properties" in Table 4.1. Please identify that property and write down the name of that property.
Hint: It is a simple property, not a composite of many properties. You should check the properties in the table one by one and see which one matches the relationship between $X(j \omega)$ and $Y(j \omega)$.
2. [7\%] Please do the following: (i) Find the expression of $x(t)$; (ii) Find the expression of $y(t)$; (iii) Plot $x(t)$ for the range of $-5<t<5$; and (iv) Plot $y(t)$ for the range of $-5<t<5$.
Hint: You can use Table 4.2 to find one of the $x(t)$ and $y(t)$ expressions. Then use the "property" to find the expression of the other signal.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 7.

Last Name:
First Name:
Purdue ID:
This sheet is for Question 7.

Question 8: [15\%, Multiple-choice question] Consider two signals

$$
\begin{equation*}
h_{1}(t)=e^{\sum_{k=1}^{5} e^{j k t}-e^{-j k t}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{2}[n]=\sin (0.5 \pi(n+1))+\sin (0.5 \pi|n+1|)+\sin \left(\pi(n-1)^{2}\right) \tag{12}
\end{equation*}
$$

1. [1.25\%] Is $h_{1}(t)$ periodic?
2. [1.25\%] Is $h_{2}[n]$ periodic?
3. [1.25\%] Is $h_{1}(t)$ even or odd or neither?
4. [1.25\%] Is $h_{2}[n]$ even or odd or neither?
5. [1.25\%] Is $h_{1}(t)$ of finite power?

6 . $[1.25 \%]$ Is $h_{2}[n]$ of finite power?
Suppose the above two signals are also the impulse responses of two LTI systems: System 1 and System 2, respectively.

1. [1.25\%] Is System 1 memoryless?
2. [1.25\%] Is System 2 memoryless?
3. [1.25\%] Is System 1 causal?
4. [1.25\%] Is System 2 causal?
5. [1.25\%] Is System 1 stable?
6. [1.25\%] Is System 2 stable?

Last Name:
First Name:
Purdue ID:
This sheet is for Question 8.

Discrete-time Fourier series

$$
\begin{align*}
x[n] & =\sum_{k=\langle N\rangle} a_{k} e^{j k(2 \pi / N) n} \tag{1}\\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k(2 \pi / N) n} \tag{2}
\end{align*}
$$

Continuous-time Fourier series

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k(2 \pi / T) t} \tag{3}\\
a_{k} & =\frac{1}{T} \int_{T} x(t) e^{-j k(2 \pi / T) t} d t \tag{4}
\end{align*}
$$

Continuous-time Fourier transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \tag{5}\\
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{6}
\end{align*}
$$

Discrete-time Fourier transform

$$
\begin{align*}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \tag{7}\\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{8}
\end{align*}
$$

Laplace transform

$$
\begin{align*}
x(t) & =\frac{1}{2 \pi} e^{\sigma t} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \tag{9}\\
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{10}
\end{align*}
$$

Z transform

$$
\begin{align*}
x[n] & =r^{n} \mathcal{F}^{-1}\left(X\left(r e^{j \omega}\right)\right) \tag{11}\\
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{12}
\end{align*}
$$

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)\}$ Periodic with period T and	a_{k}
		$y(t)\}$ fundamental frequency $\omega_{0}=2 \pi / T$	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling		$\begin{aligned} & A x(t)+B y(t) \\ & x\left(t-t_{0}\right) \\ & e^{j M \omega_{0} t} x(t)=e^{j M(2 \pi / T) t} x(t) \\ & x^{*}(t) \\ & x(-t) \\ & x(\alpha t), \alpha>0(\text { periodic with period } T / \alpha) \end{aligned}$	$A a_{k}+B b_{k}$
	3.5.1		$a_{k} e^{-j k \omega_{0} t_{0}}=a_{k} e^{-j k(2 \pi / T)_{0}}$
	3.5.2		a_{k-M}
			a_{-k}^{*}
	3.5.6		a_{-k}
	3.5.5.4		a_{k}
Periodic Convolution	3.5 .5	$\int_{T} x(\tau) y(t-\tau) d \tau$	$T a_{k} b_{k}$
		$x(t) y(t)$	$\sum_{l=-\infty}^{+\infty} a_{l} b_{k-l}$
		$\underline{d x(t)}$	$j k \omega_{0} a_{k}=j k \frac{2 \pi}{T} a_{k}$
Differentiation		$\int^{t} x(t) d t \stackrel{(\text { finite valued and }}{\text { nerindic only if } \left.a_{0}=0\right)}$	$\left(\frac{1}{j k \omega_{0}}\right) a_{k}=\left(\frac{1}{j k(2 \pi / T)}\right) a_{2}$
Conjugate Symmetry for Real Signals	3.5 .6	$x(t)$ real	$\left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{Q e}_{\mathcal{L}}\left\{a_{k}\right\}=\mathcal{R e}_{\mathscr{L}}\left\{a_{-k}\right\} \\ \mathfrak{g}_{n}\left\{a_{k}\right\}=-\mathfrak{S n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	$\begin{aligned} & 3.5 .6 \\ & 3.5 .6 \end{aligned}$	$x(t)$ real and even $x(t)$ real and odd $\begin{cases}x_{o}(t)=\mathcal{E}_{v}\{x(t)\} & {[x(t) \text { real }]} \\ x_{o}(t)=\mathcal{O} d\{x(t)\} & {[x(t) \text { real }]}\end{cases}$	a_{k} real and even a_{k} purely imaginary and dd $\mathfrak{R e}\left\{a_{k}\right\}$ $j \mathfrak{g}_{n}\left\{a_{k}\right\}$

Parseval's Relation for Periodic Signals

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{+\infty}\left|a_{k}\right|^{2}
$$

three examples, we illustrate this. The last example in this section then demonstratestir properties of a signal can be used to characterize the signal in great detail.

Example 3.6

Consider the signal $g(t)$ with a fundamental period of 4 , shown in Figure 3.10 . could determine the Fourier series representation of $g(t)$ directly from the analysiser tion (3.39). Instead, we will use the relationship of $g(t)$ to the symmetric periodic $4=$ wave $x(t)$ in Example 3.5. Referring to that example, we see that, with $T=t=$ $T_{1}=1$,

$$
g(t)=x(t-1)-1 / 2
$$

Thus, in general, none of the finite partial sums in eq. (3.52) yield the exact values of $x(t)$, and convergence issues, such as those considered in Section 3.4, arise as we consider the problem of evaluating the limit as the number of terms approaches infinity.

3.7 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

There are strong similarities between the properties of discrete-time and continuous-time Fourier series. This can be readily seen by comparing the discrete-time Fourier series properties summarized in Table 3.2 with their continuous-time counterparts in Table 3.1.

TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$\left.\begin{array}{l} x[n] \\ y[n] \end{array}\right\} \begin{aligned} & \text { Periodic with period } N \text { and } \\ & \text { fundamental frequency } \omega_{0}=2 \pi / N \end{aligned}$	$\left.\begin{array}{l} a_{k} \\ b_{k} \end{array}\right\} \begin{aligned} & \text { Periodic with } \\ & \text { period } N \end{aligned}$
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} & A x[n]+B y[n] \\ & x\left[n-n_{0}\right] \\ & e^{j M(2 \pi / N) n} x[n] \\ & x^{*}[n] \\ & x[-n] \end{aligned}$	$\begin{aligned} & A a_{k}+B b_{k} \\ & a_{k} e^{-j k(2 \pi N) n_{0}} \\ & a_{k-M} \\ & a_{-k}^{*} \\ & a_{-k} \end{aligned}$
Time Scaling	$x_{(m)}[n]= \begin{cases}x[n / m], & \text { if } n \text { is a multiple of } m \\ 0, & \text { if } n \text { is not a multiple of } m\end{cases}$ (periodic with period $m N$)	$\frac{1}{m} a_{k}\binom{$ viewed as periodic }{ with period $m N}$
Periodic Convolution	$\sum_{r=(N)} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum_{l=\{N\rangle} a_{l} b_{k-l}$
First Difference	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 \pi / N)}\right) a_{k}$
Running Sum Conjugate Symmetry for Real Signals	$\sum_{k=-\infty}^{n} x[k]\binom{\text { finite valued and periodic only }}{\text { if } a_{0}=0}$	$\begin{aligned} & \left(\frac{1}{\left(1-e^{-j k(2 \pi / N)}\right)}\right) a_{k} \\ & \left\{\begin{array}{l} a_{k}=a_{-k}^{*} \\ \mathcal{P}_{e}\left\{a_{k}\right\}=\mathcal{R} e\left\{a_{-k}\right\} \end{array}\right. \end{aligned}$
	$x[n]$ real	$\left\{\begin{array}{l} \mathscr{S}_{n}\left\{a_{k}\right\}=\left\{a_{k}\right\}=-\mathfrak{I n}_{n}\left\{a_{-k}\right\} \\ \left\|a_{k}\right\|=\left\|a_{-k}\right\| \\ \Varangle a_{k}=-\Varangle a_{-k} \end{array}\right.$
Real and Even Signals Real and Odd Signals	$x[n]$ real and even $x[n]$ real and odd	a_{k} real and even a_{k} purely imaginary and odd
en-Odd Decomposition of Real Signals	$\begin{cases}x_{e}[n]=\mathcal{E}_{\ell}\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]} \\ x_{o}[n]=0 d\{x[n]\} & {[\mathrm{x}[\mathrm{n}] \text { real }]}\end{cases}$	$\begin{aligned} & \mathcal{R e}_{e}\left\{a_{k}\right\} \\ & j \mathscr{S}_{m}\left\{a_{k}\right\} \end{aligned}$
	Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n=\{N\rangle}\|x[n]\|^{2}=\sum_{k=\{N\rangle}\left\|a_{k}\right\|^{2}$	

4.6 TABLES OF FOURIER PROPERTIES AND OF BASIC FOURIER TRANSFORM PAIRS

In the preceding sections and in the problems at the end of the chapter, we have considered some of the important properties of the Fourier transform. These are summarized in Table 4.1, in which we have also indicated the section of this chapter in which each property has been discussed.

In Table 4.2, we have assembled a list of many of the basic and important Fourier transform pairs. We will encounter many of these repeatedly as we apply the tools of

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Parseval's Relation for Aperiodic Signals

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|X(j \omega)|^{2} d \omega
$$

FORM PAIRS

, we have consid. re summarized in which each prop. important Fourier upply the tools of
transform
; ω)
, $-\theta) d \theta$
$\cdot(0) \delta(\omega)$

$-j \omega)$

$\mathcal{P}_{\mathcal{e}}\{X(-j \omega)\}$
$-\mathscr{S}_{n}\{X(-j \omega)\}$
$-j \omega) \mid$
$\lceil X(-j \omega)$
ven
tginary and odd

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \omega_{0 j} t}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-k \omega_{0}\right)$	a_{k}
$e^{j \omega_{0}{ }^{\prime}}$	$2 \pi \delta\left(\omega-\omega_{0}\right)$	$\begin{aligned} & a_{1}=1 \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\cos \omega_{0} t$	$\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=a_{-1}=\frac{1}{2} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$\sin \omega_{0} t$	$\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$	$\begin{aligned} & a_{1}=-a_{-1}=\frac{1}{2 j} \\ & a_{k}=0, \quad \text { otherwise } \end{aligned}$
$x(t)=1$	$2 \pi \delta(\omega)$	$a_{0}=1, \quad a_{k}=0, k \neq 0$ (this is the Fourier series representation for)
Periodic square wave $x(t)= \begin{cases}1, & \|t\|<T_{1} \\ 0, & T_{1}<\|t\| \leq \frac{T}{2}\end{cases}$ and $x(t+T)=x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2 \sin k \omega_{0} T_{1}}{k} \delta\left(\omega-k \omega_{0}\right)$	$\frac{\omega_{0} T_{1}}{\pi} \operatorname{sinc}\left(\frac{k \omega_{0} T_{1}}{\pi}\right)=\frac{\sin k \omega_{0} T_{1}}{k \pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{T}\right)$	$a_{k}=\frac{1}{T}$ for all k
$x(t) \begin{cases}1, & \|t\|<T_{1} \\ 0, & \|t\|>T_{1}\end{cases}$	$\frac{2 \sin \omega T_{1}}{\omega}$	-
$\frac{\sin W t}{\pi t}$	$X(j \omega)= \begin{cases}1, & \|\omega\|<W \\ 0, & \|\omega\|>W\end{cases}$	-
$\delta(t)$	1	-
$u(t)$	$\frac{1}{j \omega}+\pi \delta(\omega)$	-
$\delta\left(t-t_{0}\right)$	$e^{-j \omega t_{0}}$	-
$e^{-a t} u(t), \mathcal{R} e\{a\}>0$	$\frac{1}{a+j \omega}$	-
$t e^{-a t} u(t), \mathcal{R e}\{a\}>0$	$\frac{1}{(a+j \omega)^{2}}$	-
$\begin{aligned} & \frac{n^{n-1}}{(n-1)!} e^{-a t} u(t), \\ & \mathfrak{Q}\{a\}>0 \end{aligned}$	$\frac{1}{(a+j \omega)^{n}}$	-

table 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
		$x[n]$	$X\left(e^{j \omega}\right)$ periodic with
		$y[n]$	$\left.Y\left(e^{j \omega}\right)\right\}$ period 2π
5.3.2	Linearity	$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$
5.3.3	Time Shifting	$x\left[n-n_{0}\right]$	$e^{-j \omega n_{0}} X\left(e^{j \omega}\right)$
5.3.3	Frequency Shifting	$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$
5.3.4	Conjugation	$x^{*}[n]$	$X^{*}\left(e^{-j \omega}\right)$
5.3.6	Time Reversal	$x[-n]$	$X\left(e^{-j \omega}\right)$
5.3.7	Time Expansion	$x_{(k)}[n]= \begin{cases}x[n / k], & \text { if } n=\text { multiple of } k \\ 0, & \text { if } n \neq \text { multiple of } k\end{cases}$	$X\left(e^{j k \omega}\right)$
5.4	Convolution	$x[n] * y[n]$	$X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)$
5.5	Multiplication	$x[n] y[n]$	$\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$
5.3.5	Differencing in Time	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) X\left(e^{j \omega}\right)$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j \omega}} X\left(e^{j \omega}\right)$
5.3.8	Differentiation in Frequency	$n \times[n]$	$\begin{aligned} & +\pi X\left(e^{j 0}\right) \sum_{k=-\infty}^{+\infty} \delta(\omega-2 \pi k) \\ & j \frac{d X\left(e^{j \omega}\right)}{d \omega} \end{aligned}$
5.3.4	Conjugate Symmetry for Real Signals	$x[n]$ real	$\left\{\begin{array}{l} X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right) \\ \operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}=\mathcal{R e}^{-j}\left\{X\left(e^{-j \omega}\right)\right\} \\ \mathscr{I}_{n z\{ }\left\{X\left(e^{j \omega}\right)\right\}=-\mathcal{I}_{m}\left\{X\left(e^{-j \omega}\right)\right\} \\ \left\|X\left(e^{j \omega}\right)\right\|=\left\|X\left(e^{-j \omega}\right)\right\| \\ \Varangle X\left(e^{j \omega}\right)=-\Varangle X\left(e^{-j \omega}\right) \end{array}\right.$
5.3.4	Symmetry for Real, Even Signals	$x[n]$ real an even	$X\left(e^{j \omega}\right)$ real and even .
5.3.4	Symmetry for Real, Odd Signals	$x[n]$ real and odd	$X\left(e^{j \omega}\right)$ purely imaginary and odd
5.3.4	Even-odd Decomposition of Real Signals	$\begin{array}{ll} x_{e}[n]=\mathcal{E v}\{x[n]\} & {[x[n] \text { real }]} \\ x_{o}[n]=\operatorname{dd}\{x[n]\} & {[x[n] \text { real }]} \end{array}$	
5.3.9	Parseval's Re $\sum_{n=-\infty}^{+\infty}\|x[n]\|$	ation for Aperiodic Signals $=\frac{1}{2 \pi} \int_{2 \pi}\left\|X\left(e^{j \omega}\right)\right\|^{2} d \omega$	

a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series. This relation is discussed in Section 5.7.2.

5.7.1 Duality in the Discrete-Time Fourier Series

Since the Fourier series coefficients a_{k} of a periodic signal $x[n]$ are themselves a periodic sequence, we can expand the sequence a_{k} in a Fourier series. The duality property for discrete-time Fourier series implies that the Fourier series coefficients for the periodic sequence a_{k} are the values of $(1 / N) x[-n]$ (i.e., are proportional to the values of the original

TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_{k} e^{j k(2 n / N) n}$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	a_{k}
$e^{j \omega_{0} n}$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta\left(\omega-\omega_{0}-2 \pi l\right)$	(a) $\begin{aligned} & \omega_{0}=\frac{2 \pi m}{N} \\ & a_{k}= \begin{cases}1, & k=m, m \pm N, m \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_{0} n$	$\pi \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)+\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} \omega_{0} & =\frac{2 \pi m}{N} \\ a_{k} & = \begin{cases}\frac{1}{2}, & k= \pm m, \pm m \pm N, \pm m \pm 2 N \\ 0, & \text { otherwise }\end{cases} \end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_{0} n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty}\left\{\delta\left(\omega-\omega_{0}-2 \pi l\right)-\delta\left(\omega+\omega_{0}-2 \pi l\right)\right\}$	(a) $\begin{aligned} & \omega_{0}\end{aligned} \quad=\frac{2 \pi r}{N} \quad \begin{aligned} \frac{1}{2 j}, & k=r, r \pm N, r \pm 2 N, \ldots,\end{aligned}, \begin{aligned}-\frac{1}{2 j}, & k=-r ;-r \pm N,-r \pm 2 N \\ 0, & \text { otherwise }\end{aligned}$ (b) $\frac{\omega_{0}}{2 \pi}$ irrational \Rightarrow The signal is aperiodic
$x[n]=1$	$2 \pi \sum_{l=-\infty}^{+\infty} \delta(\omega-2 \pi l)$	$a_{k}= \begin{cases}1, & k=0, \pm N, \pm 2 N, \ldots \\ 0, & \text { otherwise }\end{cases}$
Periodic square wave $x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & N_{1}<\|n\| \leq N / 2\end{cases}$ and $x[n+N]=x[n]$	$2 \pi \sum_{k=-\infty}^{+\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$\begin{aligned} & a_{k}=\frac{\sin \left[(2 \pi k / N)\left(N_{1}+\frac{1}{2}\right)\right]}{N \sin [2 \pi k / 2 N]}, k \neq 0, \pm N, \pm 2 N, \\ & a_{k}=\frac{2 N_{1}+1}{N}, k=0, \pm N, \pm 2 N, \ldots \end{aligned}$
$\sum_{k=-\infty}^{+\infty} \delta[n-k N]$	$\frac{2 \pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega-\frac{2 \pi k}{N}\right)$	$a_{k}=\frac{1}{N}$ for all k
$a^{n} u[n], \quad\|a\|<1$	$\frac{1}{1-a e^{-j \omega}}$	-
$x[n]= \begin{cases}1, & \|n\| \leq N_{1} \\ 0, & \|n\|>N_{1}\end{cases}$	$\frac{\sin \left[\omega\left(N_{1}+\frac{1}{2}\right)\right]}{\sin (\omega / 2)}$	-
$\begin{aligned} & \frac{\sin W n}{\pi n}=\frac{W}{\pi} \operatorname{sinc}\left(\frac{W n}{\pi}\right) \\ & 0<W<\pi \end{aligned}$	$\begin{aligned} & X(\omega)= \begin{cases}1, & 0 \leq\|\omega\| \leq W \\ 0, & W<\|\omega\| \leq \pi\end{cases} \\ & X(\omega) \text { periodic with period } 2 \pi \end{aligned}$	-
$\delta[n]$	1	-
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{+\infty} \pi \delta(\omega-2 \pi k)$	$-$
$\delta\left[n-n_{0}\right]$	$e^{-j \omega \mu_{0}}$	
$(n+1) a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$	
$\frac{(n+r-1)!}{n!(r-1)!} a^{n} u[n], \quad\|a\|<1$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{r}}$	

