Lecture 01
ESE 302

* Lectures are more important than textbooks.
* Ask questions - A small misunderstanding may affect your learning of the entire semester.

Outlines of this course:

* What is "probability"? How to expain/model a real engineering problem by "probability" How to do simulation for ECE apps? When simulations fail, how to analyze the problem by penal la paper.

Example: The auto-filling function of Microsoft
Word
(2) How does Google search?
(3) The opinion polls for a presidential
(4) Auto-Trading algorithm in a Wall-Stred firm not to bet.
(5) Gambling, Poker, Lottery. To bet or
(6) Wireless/radar measurement is always unrelrable/random, how to trace a missile/Vehicle accurately.
(7) Wireless comm. is unreliable, how to design a cellular phone system that has the fewest dropped calls.
(8) Real, large-scate system deployment is expansion, how to build a good simulator that reflects the unpredictable practical world.
(9) Clinical trials: Developing hew drugs from a very small number of experiments

In a nutshell, how to model "randomness"

* Technical terms that you are going to learn,
= random variables, random processes, independence correlations, Gaussian distributions, Law of Large Numbers, central limit theorem

You need to have an open mind for the new concept "probability", which is different from what you have learned before! prob $\#$ combination / permutation.

Q: What is "probability"?
Historically, there "was a debate between two types of "prob."
Type 2
Frequencist's view of prob: :

* Prob. is the long-term relative freq of an event
Ex: © Coin-flipping, (2) free-throw percentage
(3) hitting average....

The "frequency" can be obtained from historical data.
Type 2:
Bayesian Style Prob. (Thomas Bayes 1702-1761

* Prob is how much you believe an event will happen
Ex: Prob that I win a lottery tomorrow.
(2) Prob that I will get an A in

$$
\text { ESE } 302
$$

(3) A game of betting $\$ 1$ on the outcome of 9 particular die for the return of $\$ 8$
Q: Would you bet? A: Depends on how you believe the fairness of the dice ". These exp. cannot believe the repeated. Thus no "frequency".

A unifying "prob theory" was not available until | a surprisingly young branch of mathematics.
||Calculus was developed in early 1700

* Kolmogorov noticed that the common ground of
the above two perspectives is the above Two perspectives is
"the additivity" of prob.
Namely: $F_{1 \text { happens }}+F_{2 \text { happens }}$

$$
=F_{1 \text { or } 2} \text { happens. }
$$

F can be freq or belied.

* A unify view of prob. is thus

Prob is the "weight assignment." (WA)
The WA can be used to derive meaningful

$$
x=
$$ answers to many practical questions.

Example: For a three-faced die, what is the prob of winning by betting. 2 . Ans el 0,3
(2) What is the prob that I have more than >1 apple today?
Ans: $0,3+0,2=0.5$
(3) What is the average $\#$ of

Fuch-downs for Pvelue's next football game
Ans: $0,5 \times 1+0,3 \times 2+0,2 \times 3=1,7$
(4) If Jimmy John's is running the following promotion. Let X be the number of touch downs of Purdue's next football game. Jimmy John's will give each customer X^2 number of free sandwich.
(Interpretation: If 1 touch down, then each customer gets 1 sandwich.
If 2 touch downs, then 4 sandwiches; If 3 touch downs, then 9 sandwiches

Question: What is the average number of free sandwiches a customer can have?

Ans: $0.5^{*} 1^{\wedge} 2+0.3^{*} 2^{\wedge} 2+0.2^{*} 3^{\wedge} 2=3.5$
(5) If X is the number of friends I talk to in the next hour. What is the average of $X^{\wedge} 2$?

Ans: The same as the last question.
(6) If my iphone runs <=2 programs, then it can last a day. If it runs $>=3$ programs, then it can only last 0.5 day. What is the average hours that my iPhone can last?

Ans: $0.5^{*} 24+0.3^{*} 24+0.2 * 12=21.6$ hours

* The prob methods ain at producing meaningful answers to the above question
* Supplemental pdt \#1.
* ONCE the weight assignment is mode. Prob Method \rightleftharpoons Counting
* Note that the prob methods do not question how the W.A is made. It is the user who has to determine whether the W.A is reasonable or not
* The importance of the W.A

Ex: Q1. What is the prob that the outcome of a die is 1?
$\rightarrow A_{n}$ invalid question
Q2: What is the prob that the outcome of a fair die is 1 ?

The and question specifies that the $\frac{1}{6}$ for each outcome.
$A_{2}=\frac{1}{6}$
Q3: What is the prob that the outcome of a fair dice is a prime number?
Ans: Prime \#:2,3,5 PProb=$=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=3$
Real world $\cdots \rightarrow$ Inference/Decision prob. methods.
Prob. Weight Assignment
A meaningful decision requires meaningful W.A + probabilistic/counting method
Part of the reason of 2008's financial crisis was the incorrect assumption of the probabilistic models (using the wrong weight assignment).

* We need a simple way to construct a W.A \& a correct way to count the weights.

Another example of the importance of the W.A.
Ex: $A^{\text {aCrider }}$ coin-flip game as follows.

1. The minimal bet is $/ M$ dollars

2 Flip a coin 1,000,000 times. If the free is between $(0.499,0,501)$ you win
$\$ 2 M$
Q : should you bet or not?
Ans: Before any meaningful answer, we need to decide the W.A we are going to use

Ex: WA is "a fair coin" Prob $=\frac{1}{2}, \frac{1}{2}$, In this course, we will learn that the wiring percentage $95,45 \%$
Yes, we should bet.
Ex: WA is a "slightlybent coin"

$$
P_{r o b}=0,49,0,51
$$

No, we should not bet.

Q: Why we would need probability? (We already have calculus \& differential equation.)
As: Many things are indeed random.
(2) Even for some events that are determistic, it is still important to use prob.
Ex: A 2 -player poker game (Texas Holdém)

- It actually has a deterministic outcome.
\because The end result is fixed once the deck is shuffled, even before dealing the card (pockets, flop, turn, river)
- Nonetheless, there are too many unknowns in determining the deck.
- Model the unknown / unidentified factors by randomness.

D09) In summary: Prob inference is a way.
of counting based on a specific W.A.
The first step is always to design your W.A. Then we count.
(Do not change your W.A during counting)
Ex: Three doors, 1 prize
Firstly, we place the prize randomly behind q of the doors.

AFIER that, a stubborn player comes a she always chooses door \#1.
AFTER that, the host, knowing which door has the prize, opens a door from \#2 \&n\#3 that is without the prise.
Q: Should the player switch or stay?
Ans: Without knowing where the prize is, sometimes switching is better, sometimes staying is better. We need to quantify what is the probability that "switching is better", and what is the probability that "staying is better".

Ans: The random part is "where is the prize \& "which door the host will open. We use the following W.A.

Among these 3 possibilities, when should we switch?
010 Prize is in \#3 \&a Host opens \#2
or Prize is in \#2 \&r Host opens \#3

$$
\text { Prob }=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\left\{\begin{array}{l}
\text { Namely, f we } \\
\text { always switch } \\
\frac{2}{3} \text { of the tine } \\
\text { we will end up in a }
\end{array}\right.
$$

In what condition is staying good
Poi ce is in \#1

$$
P_{r o b}=1 / 3
$$

better place.

Ans: Switching is better.
Alternative

Snitch $\frac{1}{4}+\frac{1}{4}$
It does not Stay 0.5 master.
Q: Is this a good W.A?
Q: Do you believe that the produces indeed put the prize behind a dor before the start of the show?

Steps of solving a prob problem
Step 2: Construct the W.A
Step 1.1: Identity all possible choices of the uncertain outcomes
Step 1.2: Assign a reasonable weight for each outcome.
Step 2: Counting
Example: An urn contains 5 balls, 1, $\cdot, 5$.
Select two balls randomly with replacement
Q1.1: How many distinct pairs?
Q1.2: What's a reasonable W.A
Q2: What is Prob (2draws yield the same number)?
Ans: $=25$ pairs $(1,1) \ldots(5,5)$
(3) Each pair has a weight $\frac{1}{25}$
(3) $\frac{1}{25} \times 5=\frac{1}{5}((1,1),(2,2), \cdots,(5,5))$

Q: What is the prob that $\left(X_{1}^{2}+X_{2}^{2} \leqslant 9\right)$

$$
A_{n s}=\frac{1}{25} \times 4 \quad((1,1)(1,2)(2,1),(2,2))
$$

Step 1: Constructing the W.A is not easy.
\because Too many ways of constructing a
W.A. (even for reasonable ones)
(2) It is cumbersome to descrie the
W.A \& let other people know the
W.A you are using

We need a simple wayls to describle \& construct the W.A. And even to hep us We need mathematics. count.

* We need new notation!
(Use a 6 -faced die for example)

Element

* The prob of an event is the Total weight for all the outcomes in the event Ex: the punt of "X being a rime number" $=\frac{1}{6}+\frac{1}{6}$
* Set/ Event operations $\{2,3,5\}+\frac{1}{6}=0.5$
(1) Empty set / Null event " \varnothing
I.e: No outcome in a null event.

$$
\}
$$

Q: What is the prob of a null event?
Ans: 0 (\because count nothing)
(2) Global set $S=\{$ every thing \}

Q: What is the prob of a global
Ans: 1 (\because count everything)
Vans Diagram: A tool to help
S : the global set/ sample
(A)
014) (3) Compliment event "c" $\delta=\{1.2,3.7\}$
(A) $A^{c} \quad A=\{1,3\}$
$A^{c}=\{2,7\}$ everything else
E.g. $S=\{x: x>0\} \quad A=\{x: 1<x<3\}, A^{C}=\{x: 0<x \leq 1$
(4) Union " U "
$E g \cdot A=\{1,2,3\} \quad B=\{2,3,7\}_{2,2}$
$A \cup B=\{1,2,3,7\}, \operatorname{Not}\{1,3,3,7\}$
E.g. $B=\{x: 2 \leqslant x \leqslant 5\}$

$$
A \cup B=\{x: 1<x \leq 5\}
$$

(5) Intersection " \cap
(1) $A \cap B=\{3,2\}$

Why are we interested in the set operations?
Ans: We are more interested in the Weights assigned to each set. Nomethess, knowing how to include/exclude an outcome is essential before we can properly count the total weight assigned for an event.

