Q29

$$
\begin{aligned}
& f_{x}(x)= \begin{cases}e^{-x} & \text { if } x \geqslant 0 \\
0 & \text { otherwise }\end{cases} \\
& f_{T}(y)=0.5 e^{-|y|}
\end{aligned}
$$

$Q: \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} e^{-S(x+y)} f_{x}(x) f_{r}(y) d x d y$
Ans: $\int_{y=-\infty}^{\infty}\left(\int_{x=-\infty}^{\infty} e^{-s x} f_{x}(n) d x\right) e^{-s y} f(y) d y$

$$
\begin{aligned}
& =\underbrace{\left(\int_{x=-\infty}^{\infty} e^{-s x} f_{x}(x) d x\right.}_{\rightarrow \operatorname{term} 1})\left(\int_{y=-\infty}^{\infty} e^{-s y} f_{y}(y) d y\right) \\
& \operatorname{term} 1: \int_{0}^{\infty} e^{-(1+5) x} d x \\
& =\frac{1}{1+5} \\
& \operatorname{term} 2: \int_{y=-\infty}^{0} 0,5 e^{(1-5) y} d y+\int_{0}^{\infty} 0,5 e^{(-1-5) y} d y \\
& \\
& =\frac{0,5}{1-5}+\frac{0,5}{1+5}=\frac{1}{1-s^{2}}
\end{aligned}
$$

Ans: $\frac{1}{1+s} \times \frac{1}{1-s^{2}}$ let $s=0.1 \nmid x$

Q33 Problem 2.69
A number x is selected at random in $[-1,2]$ Let the event $A=\{x<0\}$

$$
B=\{|x-0,5|<0,5\} \quad C=\{x>0,75\}
$$

Find $P(A \mid B) P(B \mid C) P\left(A \mid C^{c}\right) P\left(B \mid C^{c}\right)$
Ans: $S=[-1,2]$ is continuous,
\Rightarrow we use pdf.

$$
f_{x}(x)= \begin{cases}c & \text { if }-1 \leq x \leqslant 2 \\ 0 & \text { otherwise }\end{cases}
$$

$\because \int_{-\infty}^{\infty} f_{x}(x) d x=1=\int_{-1}^{2} c d x \Rightarrow c=\frac{1}{3}$
$\therefore \quad f_{x}(x)= \begin{cases}\frac{1}{3} & \text { if }-1 \leqslant x \leqslant 2 \\ 0 & \text { otherwise }\end{cases}$

$B: X$ is from
$A \cap B: \phi^{0<x<1}$

$$
\begin{aligned}
& P(B \mid C)=\frac{0.25}{1.25}=\frac{1}{5} \\
& =\frac{P(B \cap C)}{P(C)}=\frac{0.25 \times \frac{1}{3}}{1.25 \times \frac{1}{3}} \\
& \text { C: } x>0,75 \quad P(C)=\int_{0,75}^{2} \frac{1}{3} d x \\
& =1.25 \times \frac{1}{3} \\
& B \cap C: 0.75<x<1 \quad P(B \cap C)=\int_{0.75}^{1} \frac{1}{3} d 1 \\
& =0.25 \times \frac{1}{3} \\
& P\left(A \mid C^{c}\right)=\frac{1}{1.75}=\frac{P\left(A \cap C^{c}\right)}{P\left(C^{c}\right)}=\frac{1 \times \frac{1}{3}}{1.75 \times \frac{1}{3}} \\
& c^{c}=x \leqslant 0.75 \quad P\left(c^{c}\right)=\int_{-1}^{0,75} \frac{1}{3} d x \\
& A \cap C^{c}=x<0 \quad P\left(A \cap C^{c}\right)=\int_{-1}^{0} \frac{1}{3} d x \\
& P\left(B \mid C^{c}\right)=\frac{0,75}{1,75}=\frac{P\left(B \cap C^{c}\right)}{P\left(C^{c}\right)}=\frac{0,75 \times \frac{1}{3}}{1,75 \times \frac{1}{3}} \\
& B \cap C^{C}=0<x<0,15 \quad P\left(B \cap C^{c}\right) \\
& =\int_{0}^{0,15} \frac{1}{3} d x \\
& =\frac{1}{3} \times 0,75
\end{aligned}
$$

Q37 A traveling salesperson problem 3 cities A, B, C,
4 nights, first night in A.
the next night he/she moves randomly to one of the other two cities.
$Q: P($ all three cities are visited $) ?$
Ans: Tree method

Q: Prob that all cities have been visited

$$
\begin{aligned}
& \text { Prob that all cities have been visited } \\
& =P(A B A C, A B C A, A B C B, A C A B, A C B A, A C B C)=6 / 8
\end{aligned}
$$

Q: Probability that city A have been visited twice, given that the salesperson has visited all three cities.

Ans: $(1 / 8+1 / 8+1 / 8+1 / 8) /(6 / 8)=2 / 3$.

