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Question 1: [23%, Work-out question] Consider a random variable X with the correspond-
ing generalized pdf being

f(x) = 0.5 · δ(x− 2) +

{
0.25 · e−0.5x if 0 ≤ x

0 otherwise

1. [6%] We use FX(x) to denote the cdf of X. What is the value of FX(π)? Hint:
π ≈ 3.14159.

2. [10%] Find the expression of the characteristic function ΦX(ω) = E(ejωX).

3. [7%] Find the value of E(X) using the moment theorem.

Hint: if you do not know how to use the moment theorem to solve Q1.3, you can use
any other method to solve Q1.3. You will receive 5 points if your answer is correct.
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Question 2: [13%, Work-out question] Suppose Prof. Wang likes to broadcast a bit value
b, which can be either b = 0 or b = 1. Instead of sending the signal b value directly, he
decides to send X = 4 · (−1)b. Namely, if b = 0, the value X = 4 will be sent. If b = 1,
the value X = −4 will be sent.

A student uses an antenna to “receive” the broadcast value X = 4 · (−1)b. Because
of the noise, the student will receive Y = X +W instead, where W is the noise, which is
assumed to be Gaussian distributed with µ = 0 and σ2 = 9. That is, the X value will be
“corrupted” by the noise W in the sense that the received value Y is not identical to X.
Instead, the received value is Y = X +W .

Suppose Prof. Wang has decided to send b = 1. Answer the following questions

1. [1%] Assuming b = 1 is fixed, is X a “random number” or is X a “constant”? No
need to justify your answer for this sub-question.

2. [1%] Assuming b = 1 is fixed, is Y a “random number” or is Y a “constant”? No
need to justify your answer for this sub-question.

3. [3%] Assuming b = 1 is fixed, what is the distribution of Y ? Please write down
(i) the pdf fY (y) of Y ; and (ii) please write down one to three short sentences to
justify your answer. An answer without justification will receive zero point for this
question.

Hint: If you know what kind of distribution Y has, then you can write down the
pdf with the help of the table.

4. [8%] Assuming b = 1 is fixed, what is the probability that “the magnitude of the
received signal is no less than 6”? Namely, what is the value of P (|Y | ≥ 6) assuming
b = 1?

Hint 1: The following values may be useful.

Q(0) = 0.5 (1)

Q(2/3) = 0.2525 (2)

Q(4/3) = 0.0912 (3)

Q(2) = 0.0228 (4)

Q(8/3) = 0.00383 (5)

Q(10/3) = 0.00043 (6)

Hint 2: Your answer can be something like 1−2∗0.729+0.883
0.958+3∗0.729+0.883

. There is no need to
further simplify it.
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Question 3: [24%, Work-out question] Consider a binomial random variableX with param-
eter n = 20 and p = 1

3
. Given X = x0, the random variable Y is a binomial distribution

with n = x0 and p = 0.5. Answer the following questions:

1. [3%] What is the probability that P (X = 5 and Y = 9)?

2. [5%] Write down the expression of the joint 2-dimensional pmf of pk,h = P (X =
k, Y = h).

3. [7%] Define the marginal pmf of Y by ph = P (Y = h). Find the value of p19 (i.e.,
the value of ph when h = 19). Hint: your answer can be something like 4!515

2!7!
− 8!25

3!6!
.

There is no need to further simplify it.

Hint: If you don’t know how to find the value of p19, you can write down the value
of p19 in terms of the joint pmf pk,h. You will receive 4 points for this sub-question
if your answer is correct.

4. [9%] Find the value of E(Y ).

Hint 1: You may like to write E(Y ) = E(f(X,Y )) for the function f(x, y) = y
as discussed in the lecture note p. 143. Namely, instead of finding the expectation
of a single random variable Y , you can find the expectation of the 2-dimensional
function E(f(X,Y )).

Hint 2: The formula table may be useful when solving this question.

Hint 3: This sub-question may be a bit challenging. If you do not know the answer
to this question, please find the conditional expectation of E(X|Y = 19). You
will receive 8 points if your answer is correct. Your answer can be something like

(83)π240.5

(53)0.370.45+(
3
1)e8

. There is no need to further simplify it.
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Question 4: [20%, Work-out question] Consider two continuous random variables X and
Y . Suppose their joint pdf is

fXY (x, y) =

{
0.25x if 0 < x < 2 and 0 < y < 2

0 otherwise
(7)

1. [10%] What is the probability P (min(X,Y ) > 1)?

2. [10%] Prof. Wang defines a new random variable W = X + Y . Find the probability
P (W < 1).
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Question 5: [20%, Multiple choice question. There is no need to justify your answers]
Each of these 9 sub-questions are completely separate. There is no connection between

them in any way.

1. [3%]X has some unknown distribution PX , and Y is standard Gaussian distribution.
X and Y are independent. Please answer whether the following statement is true
or false: “We always have P (XY > 0) = 0.5(P (X > 0) + P (X < 0))”.

2. [2%] Suppose X is standard Gaussian distribution and P (Y = 1) = 0.5 and P (Y =
−1) = 0.5. Please answer whether the following statement is true or false: “W =
X · Y must be a Gaussian distribution.”

3. [2%] Suppose X is standard Gaussian distribution and P (Y = 1) = 0.0 and P (Y =
−1) = 1.0. Please answer whether the following statement is true or false: “W =
X · Y must be a Gaussian distribution.”

4. [2%] If X is an exponential distribution with parameter λ = 1. Please answer
whether the following statement is true or false: “The equality P (X < 3|X < 5) =
P (X < 2) holds.”

5. [2%] X is Bernoulli distributed with parameter p = 0.2, Y is Bernoulli distributed
with parameter p = 0.3, and X and Y are independent. Define W = X ⊕ Y being
the binary exclusive-or value of X and Y . I.e., 0⊕ 0 = 0; 0⊕ 1 = 1; and 1⊕ 1 = 0.
Please answer whether the following statement is true or false: “W is Bernoulli
distributed with parameter p = 0.2 + 0.3 = 0.5.”

6. [3%] X has is the outcome of a fair 6-faced die, and Y is Bernoulli distribution
with p = 0.5. Define W = X + Y . Please answer whether the following state-
ment is true or false: “It is possible to design a joint pmf of (X,Y ) such that
P (W is an even number) = 1”.

7. [2%] Suppose the number of customer arrivals is Poisson distributed with parameter
α = 30. Please answer whether the following statement is true or false: “By the
Markov inequality, we have P (X ≥ 60) ≤ 0.5.”

8. [2%] Suppose X has mean mX = 10 and variance σ2
X = 100. Please answer whether

the following statement is true or false: “By the Chebyshev’s inequality, we always
have P (X ≥ 40) ≤ 100

402
= 1

16
.”

9. [2%] For two random variables X and Y , consider their joint pmf pk,h and marginal
pmfs pk and ph. Is the following statement always true? “We have pk,h ≤ pk for all
possible k and h values.”
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Other Useful Formulas

Geometric series

n∑

k=1

a · rk−1 =
a(1− rn)

1− r
(1)

∞∑

k=1

a · rk−1 =
a

1− r
if |r| < 1 (2)

∞∑

k=1

k · a · rk−1 =
a

(1− r)2
if |r| < 1 (3)

Binomial expansion

n∑

k=0

(
n

k

)
akbn−k = (a + b)n (4)

The bilateral Laplace transform of any function f(x) is defined as

Lf (s) =

∫ ∞

−∞
e−sxf(x)dx.

Some summation formulas

n∑

k=1

1 = n (5)

n∑

k=1

k =
n(n + 1)

2
(6)

n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
(7)



ECE 302, Summary of Random Variables

Discrete Random Variables

• Bernoulli Random Variable

S = {0, 1}
p0 = 1− p, p1 = p, 0 ≤ p ≤ 1.

E(X) = p, Var(X) = p(1− p), ΦX(ω) = (1− p+ pejω), GX(z) = (1− p+ pz).

• Binomial Random Variable

S = {0, 1, · · · , n}
pk =

(
n
k

)
pk(1− p)n−k, k = 0, 1, · · · , n.

E(X) = np, Var(X) = np(1− p), ΦX(ω) = (1− p+ pejω)n, GX(z) = (1− p+ pz)n.

• Geometric Random Variable

S = {0, 1, 2, · · · }
pk = p(1− p)k, k = 0, 1, · · · .

E(X) = (1−p)
p

, Var(X) = 1−p
p2

, ΦX(ω) =
p

1−(1−p)ejω
, GX(z) =

p
1−(1−p)z

.

• Poisson Random Variable

S = {0, 1, 2, · · · }

pk =
αk

k!
e−α, k = 0, 1, · · · .

E(X) = α, Var(X) = α, ΦX(ω) = eα(e
jω−1), GX(z) = eα(z−1).



Continuous Random Variables

• Uniform Random Variable

S = [a, b]

fX(x) =
1

b−a
, a ≤ x ≤ b.

E(X) = a+b
2
, Var(X) = (b−a)2

12
, ΦX(ω) =

ejωb−ejωa

jω(b−a)
.

• Exponential Random Variable

S = [0,∞)

fX(x) = λe−λx, x ≥ 0 and λ > 0.

E(X) = 1
λ
, Var(X) = 1

λ2 , ΦX(ω) =
λ

λ−jω
.

• Gaussian Random Variable

S = (−∞,∞)

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , −∞ < x < ∞.

E(X) = µ, Var(X) = σ2, ΦX(ω) = ejµω−
σ2ω2

2 .

• Laplacian Random Variable

S = (−∞,∞)

fX(x) =
α
2
e−α|x|, −∞ < x < ∞ and α > 0.

E(X) = 0, Var(X) = 2
α2 , ΦX(ω) =

α2

ω2+α2 .

• 2-dimensional Gaussian Random Vector

S = {(x, y) : for all real-valued x and y}

fX,Y (x, y) =
1

2π
√

σ2
Xσ2

Y (1−ρ2)
e
− 1

2(1−ρ2)

(
(x−mX)2

σ2
X

−2ρ
(x−mX)(y−mY )√

σ2
X

σ2
Y

+
(y−mY )2

σ2
Y

)

E(X) = mX , Var(X) = σ2
X , E(Y ) = mY , Var(Y ) = σ2

Y , and Cov(X, Y ) =
ρ
√

σ2
Xσ

2
Y .

• n-dimensional Gaussian Random Variable

S = {(x1, x2, · · · , xn) : for all real-valued x1 to xn}
If we denote x⃗ = (x1, x2, · · · , xn) as an n-dimensional row-vector, then the pdf of
an n-dimensional Gaussian random vector becomes

fX⃗(x⃗) =
1

(2π)
n
2
√

det(K)
e−

1
2
(x⃗−m⃗)K−1(x⃗−m⃗)T

where m⃗ is the mean vector of X, i.e., m⃗ = E(X⃗); K is an n×n covariance matrix,
where the (i, j)-th entry of the K matrix is Cov(Xi, Xj); det(K) is the determinant
of K; and K−1 is the inverse of K.
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