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Question 1: [21%, Work-out question] Consider a random variable X with the correspond-
ing pdf being

f(x) =

{
2x
3

if 1 ≤ x ≤ 2

0 otherwise

Answer the following questions.

1. [12%] Define the two events A = {|X| ≤ 1.5} and B =
{√

3
2
≤ X ≤

√
33
10

}
, respec-

tively. Are events A and B independent? This is not a yes/no question. An answer
without any justification will receive zero point.

2. [3%] What is the value of the first central moment of X?

3. [6%] What is the value of the third moment of X?

Hint: If you do not know the answer to Q1.3, you can answer the following alter-
native question. What is the value of E(X)? You will receive 4 points for Q1.3 if
your answer is correct.
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Question 2: [14%, Work-out question] Suppose random variable X is of Bernoulli distri-
bution with p = 2

3
. Answer the following questions.

1. [7%] Find the value of E(1 + πX2 −
√
X).

2. [7%] Find the closed-form expression of the function Φ(s) = E(esX).

Hint: If you do not know how to find the expression of Q2.2, you can answer the
following alternative question instead. What is the value of Φ(0) = E(e0X), i.e., the
value of Φ(s) when plugging in s = 0. You will receive 4 points for Q2.2 if your
answer is correct.
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Question 3: [15%, Work-out question] Consider a binomial random variable X with pa-
rameter n = 4 and p = 1

3
. Answer the following questions:

1. [4%] Find the value of P (X = 2). Your answer must be of the form a
b
where a and

b are two integers. For example, you may write P (X = 2) = 15
37
. Your answer must

not be something like
(
6
2

)
· 4
55
.

The hint in the end of this question may be useful when computing the answer of
Q3.1.

2. [11%] Let i = 1 and j = 3. Prove the following inequality

P (X ≥ i+ j|X ≥ j) ̸= P (X ≥ i) (1)

Hint: we know that 0! = 1; 1! = 1; 2! = 2; 3! = 6; and 4! = 24.
Also 21 = 2; 22 = 4; 23 = 8; and 24 = 16.
Finally, 31 = 3; 32 = 9; 33 = 27 and 34 = 81.
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Question 4: [16%, Work-out question] Suppose the average incoming traffic flow of a web-
page server is “5400 requests per hour”. Please use either an exponential distribution or
a Poisson distribution when answering the following questions.

1. [8%] What is the probability that “the arrival time of the first web-page request is
> 10 seconds”?

Hint: Your answer can be of a form similar to 312

5!
π5 + 25

3!
e5. There is no need to

further simplify it.

2. [8%] We know that if there are ≥ 20 requests in a 5-second interval, the server
will crash. What is the conditional probability that “there are strictly larger than
15 requests in a 5-second interval, given that the server has not crashed in that
5-second interval”?

Hint: Your answer will be a fractional number. The numerator can be of a form
similar to 312

5!
π5 + 25

3!
e5. There is no need to further simplify it. The denominator

can be of a form similar to
∑∞

k=3
3k

(k+5)!
. There is no need to further simplify the

summation.
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Question 5: [10%, Work-out question] We know that random variable X is a Gaussian
random variable with parameters µ = π and σ2 = 10.

Find out the value of E (5(X + 3)2).

Hint 1: If you do not know how to solve this question, you can find the values of E(X)
and Var(X) instead. You will receive 4 points if your answers of both E(X) and Var(X)
are correct.

Hint 2: Var(X) = E (X2)− (E(X))2.
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Question 6: [24%, Work-out question] Consider a function f(x) that converts any given
real-valued number x into either 1, or 2 in the following way.

f(x) =

{
1 if x < 4

2 if 4 ≤ x
(2)

For example, f(0.99) = 1, f(π) = 1, and f(100.35) = 2.
We use a computer to generate a random number X that is exponentially distributed

with λ = 0.5. (If you look up the random variable table, it also means that E(X) = 1
λ
= 2

and Var(X) = 1
λ2 = 4.)

We then generate Y = f(X). Namely, the randomly generated X is fed into the
function to create a new value Y . Obviously, because X is random, so is Y . For example,
if the randomly generated X = 0.99, then Y = f(X) = f(0.99) = 1. If the randomly
generated X = 100.35, then Y = f(X) = f(100.35) = 2. That is, different X value will
lead to different Y value.

Answer the following questions.

1. [4%] What is the probability P (Y = 1)? Hint: it is equivalent to asking what is the
probability P (f(X) = 1).

2. [4%] What is the probability P (Y = 2)? Hint: it is equivalent to asking what is the
probability P (f(X) = 2).

3. [3%] Find the value of the expectation E(f(X)). Hint: You can either start from
scratch or you can use the answers of the previous two sub-questions.

4. [1.5%] What does the acronym pmf stand for?

5. [1.5%] What does the acronym cdf stand for?

6. [10%] Plot the cdf FY (y) of the random variable Y for the range of −1 ≤ y ≤ 6.
Please carefully mark your cdf plot with solid/empty circles to represent the cdf in
a correct way.
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Other Useful Formulas

Geometric series

n∑

k=1

a · rk−1 =
a(1− rn)

1− r
(1)

∞∑

k=1

a · rk−1 =
a

1− r
if |r| < 1 (2)

∞∑

k=1

k · a · rk−1 =
a

(1− r)2
if |r| < 1 (3)

Binomial expansion

n∑

k=0

(
n

k

)
akbn−k = (a + b)n (4)

The bilateral Laplace transform of any function f(x) is defined as

Lf (s) =

∫ ∞

−∞
e−sxf(x)dx.

Some summation formulas

n∑

k=1

1 = n (5)

n∑

k=1

k =
n(n + 1)

2
(6)

n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
(7)



ECE 302, Summary of Random Variables

Discrete Random Variables

• Bernoulli Random Variable

S = {0, 1}
p0 = 1− p, p1 = p, 0 ≤ p ≤ 1.

E(X) = p, Var(X) = p(1− p), ΦX(ω) = (1− p+ pejω), GX(z) = (1− p+ pz).

• Binomial Random Variable

S = {0, 1, · · · , n}
pk =

(
n
k

)
pk(1− p)n−k, k = 0, 1, · · · , n.

E(X) = np, Var(X) = np(1− p), ΦX(ω) = (1− p+ pejω)n, GX(z) = (1− p+ pz)n.

• Geometric Random Variable

S = {0, 1, 2, · · · }
pk = p(1− p)k, k = 0, 1, · · · .

E(X) = (1−p)
p

, Var(X) = 1−p
p2

, ΦX(ω) =
p

1−(1−p)ejω
, GX(z) =

p
1−(1−p)z

.

• Poisson Random Variable

S = {0, 1, 2, · · · }

pk =
αk

k!
e−α, k = 0, 1, · · · .

E(X) = α, Var(X) = α, ΦX(ω) = eα(e
jω−1), GX(z) = eα(z−1).



Continuous Random Variables

• Uniform Random Variable

S = [a, b]

fX(x) =
1

b−a
, a ≤ x ≤ b.

E(X) = a+b
2
, Var(X) = (b−a)2

12
, ΦX(ω) =

ejωb−ejωa

jω(b−a)
.

• Exponential Random Variable

S = [0,∞)

fX(x) = λe−λx, x ≥ 0 and λ > 0.

E(X) = 1
λ
, Var(X) = 1

λ2 , ΦX(ω) =
λ

λ−jω
.

• Gaussian Random Variable

S = (−∞,∞)

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , −∞ < x < ∞.

E(X) = µ, Var(X) = σ2, ΦX(ω) = ejµω−
σ2ω2

2 .

• Laplacian Random Variable

S = (−∞,∞)

fX(x) =
α
2
e−α|x|, −∞ < x < ∞ and α > 0.

E(X) = 0, Var(X) = 2
α2 , ΦX(ω) =

α2

ω2+α2 .

• 2-dimensional Gaussian Random Vector

S = {(x, y) : for all real-valued x and y}

fX,Y (x, y) =
1

2π
√

σ2
Xσ2

Y (1−ρ2)
e
− 1

2(1−ρ2)

(
(x−mX)2

σ2
X

−2ρ
(x−mX)(y−mY )√

σ2
X

σ2
Y

+
(y−mY )2

σ2
Y

)

E(X) = mX , Var(X) = σ2
X , E(Y ) = mY , Var(Y ) = σ2

Y , and Cov(X, Y ) =
ρ
√

σ2
Xσ

2
Y .

• n-dimensional Gaussian Random Variable

S = {(x1, x2, · · · , xn) : for all real-valued x1 to xn}
If we denote x⃗ = (x1, x2, · · · , xn) as an n-dimensional row-vector, then the pdf of
an n-dimensional Gaussian random vector becomes

fX⃗(x⃗) =
1

(2π)
n
2
√

det(K)
e−

1
2
(x⃗−m⃗)K−1(x⃗−m⃗)T

where m⃗ is the mean vector of X, i.e., m⃗ = E(X⃗); K is an n×n covariance matrix,
where the (i, j)-th entry of the K matrix is Cov(Xi, Xj); det(K) is the determinant
of K; and K−1 is the inverse of K.
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