ECE 302-003, Homework #9 Due date: Wednesday 11/15/2023, 11:59pm;

https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Question 96: [Basic] Problem 4.85.

4.85. The exam grades in a certain class have a Gaussian pdf with mean m and standard deviation σ . Find the constants a and b so that the random variable y = aX + b has a Gaussian pdf with mean m' and standard deviation σ' .

Question 97: [Basic] Problem 4.97(a) with c = 100 and b = 150. Problem 4.97(b) with c = 100, b = 150, and $\lambda = 2$. Problem 4.99(a) with c = 100 and b = 150.

- **4.97.** Compare the Markov inequality and the exact probability for the event $\{X > c\}$ as a function of c for:
 - (a) X is a uniform random variable in the interval [0, b].
 - (b) X is an exponential random variable with parameter λ .
 - (c) X is a Pareto random variable with $\alpha > 1$.
 - (d) X is a Rayleigh random variable.
- **4.99.** Compare the Chebyshev inequality and the exact probability for the event $\{|X m| > c\}$ as a function of c for:
 - (a) X is a uniform random variable in the interval [-b, b].
 - **(b)** X is a Laplacian random variable with parameter α .
 - (c) X is a zero-mean Gaussian random variable.
 - (d) X is a binomial random variable with n = 10, p = 0.5; n = 50, p = 0.5.

Question 98: [Intermediate/Exam Level] Problem 4.100.

4.100. Let X be the number of successes in n Bernoulli trials where the probability of success is p. Let Y = X/n be the average number of successes per trial. Apply the Chebyshev inequality to the event $\{|Y - p| > a\}$. What happens as $n \to \infty$?

Question 99: [Basic] Problem 5.1. (Hint: The most difficult part of this question is how the question is described. Basically, Carlos and Michael each flips a coin twice and there are totally four random outcomes since totally 4 coins have been flipped and each can be head or tail. Focusing on the first two outcomes, Carlos computes the number of heads

and denotes it by W_1 . Focusing on the last two outcomes, Michael computes the number of heads and denotes it by W_2 . Then $X = \max(W_1, W_2)$ and $Y = \min(W_1, W_2)$.)

- **5.1.** Let X be the maximum and let Y be the minimum of the number of heads obtained when Carlos and Michael each flip a fair coin twice.
 - (a) Describe the underlying space S of this random experiment and show the mapping from S to S_{XY} , the range of the pair (X, Y).
 - **(b)** Find the probabilities for all values of (X, Y).
 - (c) Find P[X = Y].
 - (d) Repeat parts b and c if Carlos uses a biased coin with P[heads] = 3/4.

Question 100: [Basic] Problem 5.3

- **5.3.** The input X to a communication channel is "-1" or "1", with respective probabilities 1/4 and 3/4. The output of the channel Y is equal to: the corresponding input X with probability $1 p p_e$; -X with probability p; 0 with probability p_e .
 - (a) Describe the underlying space S of this random experiment and show the mapping from S to S_{XY} , the range of the pair (X, Y).
 - (b) Find the probabilities for all values of (X, Y).
 - (c) Find $P[X \neq Y], P[Y = 0].$

Question 101: [Basic] Problem 5.8(a,c,d).

Question 102: [Basic] Problem 5.8(f,h,i).

- **5.8.** For the pair of random variables (X, Y) sketch the region of the plane corresponding to the following events. Identify which events are of product form.
 - (a) $\{X + Y > 3\}$.
 - **(b)** $\{e^X > Ye^3\}.$
 - (c) $\{\min(X,Y) > 0\} \cup \{\max\{X,Y\} < 0\}.$
 - (d) $\{|X Y| \ge 1\}.$
 - (e) $\{|X/Y| > 2\}.$
 - (f) $\{X/Y < 2\}$.
 - (g) $\{X^3 > Y\}$.
 - (h) $\{XY < 0\}.$
 - (i) $\{\max(|X|,Y) < 3\}.$

Question 103: [Basic] Problem 5.9(b)

- **5.9.** (a) Find and sketch $p_{X,Y}(x, y)$ in Problem 5.1 when using a fair coin.
 - **(b)** Find $p_X(x)$ and $p_Y(y)$.
 - Repeat parts a and b if Carlos uses a biased coin with P[heads] = 3/4.

Question 104: [Intermediate/Exam Level] Problem 5.11.

5.11. (a) Find the marginal pmf's for the pairs of random variables with the indicated joint

	(i)		(ii)					(iii)			
X/Y	-1	0	1	X/Y	-1	0	1	X/Y	-1	0	1
		1/6						-1			
	0	0	1/3	0	1/9	1/9	1/9	0			0
	1/6		0	1	1/9	1/9	1/9	1	0	0	1/3

(b) Find the probability of the events $A = \{X > 0\}, B = \{X \ge Y\}$, and $C = \{X \ge Y\}$ ${X = -Y}$ for the above joint pmf's.

Question 105: [Intermediate/Exam Level] Problem 5.12. In (a), please change the statement to "write down the original sample space S_{Θ} and the new sample space S_{XY} .

5.12. A modern transmits a two-dimensional signal (X, Y) given by:

$$X = r \cos(2\pi\Theta/8)$$
 and $Y = r \sin(2\pi\Theta/8)$

where Θ is a discrete uniform random variable in the set $\{0, 1, 2, ..., 7\}$.

- (a) Show the mapping from S to S_{XY} , the range of the pair (X, Y).
- (b) Find the joint pmf of X and Y.
- (c) Find the marginal pmf of X and of Y.
- (d) Find the probability of the following events: $A = \{X = 0\}, B = \{Y \le r/\sqrt{2}\},$ $C = \{X \ge r/\sqrt{2}, Y \ge r/\sqrt{2}\}, D = \{X < -r/\sqrt{2}\}.$