ECE 302-003, Homework \#9
Due date: Wednesday 11/15/2023, 11:59pm;
https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Question 96: [Basic] Problem 4.85.
4.85. The exam grades in a certain class have a Gaussian pdf with mean m and standard deviation σ. Find the constants a and b so that the random variable $y=a X+b$ has a Gaussian pdf with mean m^{\prime} and standard deviation σ^{\prime}.

Question 97: [Basic] Problem 4.97(a) with $c=100$ and $b=150$. Problem 4.97(b) with $c=100, b=150$, and $\lambda=2$. Problem 4.99(a) with $c=100$ and $b=150$.
4.97. Compare the Markov inequality and the exact probability for the event $\{X>c\}$ as a function of c for:
(a) X is a uniform random variable in the interval $[0, b]$.
(b) X is an exponential random variable with parameter λ.
(c) X is a Pareto random variable with $\alpha>1$.
(d) X is a Rayleigh random variable.
4.99. Compare the Chebyshev inequality and the exact probability for the event $\{|X-m|>c\}$ as a function of c for:
(a) X is a uniform random variable in the interval $[-b, b]$.
(b) X is a Laplacian random variable with parameter α.
(c) X is a zero-mean Gaussian random variable.
(d) X is a binomial random variable with $n=10, p=0.5 ; n=50, p=0.5$.

Question 98: [Intermediate/Exam Level] Problem 4.100.
4.100. Let X be the number of successes in n Bernoulli trials where the probability of success is p. Let $Y=X / n$ be the average number of successes per trial. Apply the Chebyshev inequality to the event $\{|Y-p|>a\}$. What happens as $n \rightarrow \infty$?

Question 99: [Basic] Problem 5.1. (Hint: The most difficult part of this question is how the question is described. Basically, Carlos and Michael each flips a coin twice and there are totally four random outcomes since totally 4 coins have been flipped and each can be head or tail. Focusing on the first two outcomes, Carlos computes the number of heads
and denotes it by W_{1}. Focusing on the last two outcomes, Michael computes the number of heads and denotes it by W_{2}. Then $X=\max \left(W_{1}, W_{2}\right)$ and $Y=\min \left(W_{1}, W_{2}\right)$.)
5.1. Let X be the maximum and let Y be the minimum of the number of heads obtained when Carlos and Michael each flip a fair coin twice.
(a) Describe the underlying space S of this random experiment and show the mapping from S to $S_{X Y}$, the range of the pair (X, Y).
(b) Find the probabilities for all values of (X, Y).
(c) Find $P[X=Y]$.
(d) Repeat parts b and c if Carlos uses a biased coin with $P[$ heads $]=3 / 4$.

Question 100: [Basic] Problem 5.3
5.3. The input X to a communication channel is " -1 " or " 1 ", with respective probabilities $1 / 4$ and $3 / 4$. The output of the channel Y is equal to: the corresponding input X with probability $1-p-p_{e} ;-X$ with probability $p ; 0$ with probability p_{e}.
(a) Describe the underlying space S of this random experiment and show the mapping from S to $S_{X Y}$, the range of the pair (X, Y).
(b) Find the probabilities for all values of (X, Y).
(c) Find $P[X \neq Y], P[Y=0]$.

Question 101: [Basic] Problem 5.8(a,c,d).

Question 102: [Basic] Problem 5.8(f,h,i).
5.8. For the pair of random variables (X, Y) sketch the region of the plane corresponding to the following events. Identify which events are of product form.
(a) $\{X+Y>3\}$.
(b) $\left\{e^{X}>Y e^{3}\right\}$.
(c) $\{\min (X, Y)>0\} \cup\{\max \{X, Y)<0\}$.
(d) $\{|X-Y| \geq 1\}$.
(e) $\{|X / Y|>2\}$.
(f) $\{X / Y<2\}$.
(g) $\left\{X^{3}>Y\right\}$.
(h) $\{X Y<0\}$.
(i) $\{\max (|X|, Y)<3\}$.

Question 103: [Basic] Problem 5.9(b)
5.9. (a) Find and sketch $p_{X, Y}(x, y)$ in Problem 5.1 when using a fair coin.
(b) Find $p_{X}(x)$ and $p_{Y}(y)$.
(c) Repeat parts a and b if Carlos uses a biased coin with $P[$ heads $]=3 / 4$.

Question 104: [Intermediate/Exam Level] Problem 5.11.
5.11. (a) Find the marginal pmf's for the pairs of random variables with the indicated joint pmf.

(i)				(ii)				(iii)			
$\overline{X / Y}$	-1	0	1	X / Y	-1	0	1	X / Y	-1	0	1
-1	1/6	1/6	0	-1	1/9	1/9	1/9	-1	1/3	0	0
0	0	0	1/3	0	1/9	1/9	1/9	0	0	1/3	0
1	1/6	1/6	0	1	1/9	1/9	1/9	1	0	0	1/3

(b) Find the probability of the events $A=\{X>0\}, B=\{X \geq Y\}$, and $C=$ $\{X=-Y\}$ for the above joint pmf's.

Question 105: [Intermediate/Exam Level] Problem 5.12. In (a), please change the statement to "write down the original sample space S_{Θ} and the new sample space $S_{X Y}$.
5.12. A modem transmits a two-dimensional signal (X, Y) given by:

$$
X=r \cos (2 \pi \Theta / 8) \quad \text { and } \quad Y=r \sin (2 \pi \Theta / 8)
$$

where Θ is a discrete uniform random variable in the set $\{0,1,2, \ldots, 7\}$.
(a) Show the mapping from S to $S_{X Y}$, the range of the pair (X, Y).
(b) Find the joint pmf of X and Y.
(c) Find the marginal pmf of X and of Y.
(d) Find the probability of the following events: $A=\{X=0\}, B=\{Y \leq r / \sqrt{2}\}$, $C=\{X \geq r / \sqrt{2}, Y \geq r / \sqrt{2}\}, D=\{X<-r / \sqrt{2}\}$.

