ECE 302-003, Homework \#8

Due date: Wednesday 11/08/2023, 11:59pm;

```
https://engineering.purdue.edu/~ chihw/23ECE302F/23ECE302F.html
```

Question 85: [Basic] Consider two random variables X and Y, and suppose $Y=2 X+$ 3.75. Suppose we also know the mean of X is 1.2 and the variance of X is 2.8 . Find out $E(Y), E\left(Y^{2}\right)$, and $\operatorname{Var}(Y)$. Hint: $E(Y)=E(2 X+3.75)$ and $E\left(Y^{2}\right)=E\left(4 X^{2}+15 X+\right.$ $\left.3.75^{2}\right)$.

Question 86: [Basic]

A coin is tossed n times. Let the random variable Y be the difference between the number of heads and the number of tails. Assume $P($ head $)=p$. (This is a question similar to Problem 3.9.)

Compute $E(Y)$ and $\operatorname{Var}(Y)$.
(Hint: Relate Y to a binomial random variable X with parameters n, p. More specifically, Y can be written as a linear function of X. Basically, we are solving this question in a similar way as in Q85.)

Question 87: [Intermediate/Exam Level] Problem 4.82. Only do the subquestion corresponding to Problem 4.54(c).
4.82. Find the cdf and pdf of the output of the limiter in Problem 4.54 parts b, c, and d.
4.17. A random variable X has pdf:

$$
f_{X}(x)= \begin{cases}c\left(1-x^{2}\right) & -1 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find c and plot the pdf.
(b) Plot the cdf of X.
(c) Find $P[X=0], P[0<X<0.5]$, and $P[|X-0.5|<0.25]$.
4.54. A limiter is shown in Fig. P4.2.

FIGURE P4.2
(a) Find an expression for the mean and variance of $Y=g(X)$ for an arbitrary continuous random variable X.
(b) Evaluate the mean and variance if X is a Laplacian random variable with $\lambda=a=1$.
(c) Repeat part (b) if X is from Problem 4.17 with $a=1 / 2$.
(d) Evaluate the mean and variance if $X=U^{3}$ where U is a uniform random variable in the unit interval, $[-1,1]$ and $a=1 / 2$.

Question 88: [Intermediate/Exam Level] Problem 4.88.
4.88. Let $Y=|X|$ be the output of a full-wave rectifier with input voltage X.
(a) Find the cdf of Y by finding the equivalent event of $\{Y \leq y\}$. Find the pdf of Y by differentiation of the cdf.
(b) Find the pdf of Y by finding the equivalent event of $\{y<Y \leq y+d y\}$. Does the answer agree with part a?
(c) What is the pdf of Y if the $f_{X}(x)$ is an even function of x ?

Question 89: [Basic] Assume X is an exponential random variable with parameter $\lambda=0.3$ and also assume $a=1, b=3.5$. Complete Problem 4.35.
4.35. (a) Find and plot $F_{X}(x \mid a \leq X \leq b)$. Compare $F_{X}(x \mid a \leq X \leq b)$ to $F_{X}(x)$.
(b) Find and plot $f_{X}(x \mid a \leq X \leq b)$.

Question 90: [Basic] Assume X is a Poisson random variable with parameter $\lambda=3.4$ and also assume $a=0.2, b=4.2$. Complete Problem 4.35(a) and find the conditional $\operatorname{pmf} P(X=k \mid a \leq X \leq b)$.

Question 91: [Basic] Problem 3.36.
3.36. Find the conditional pmf for the quaternary information source in Problem 3.12, parts a, b , and c given that $X<4$.
3.12. Consider an information source that produces binary pairs that we designate as $S_{X}=\{1,2,3,4\}$. Find and plot the pmf in the following cases:
(a) $p_{k}=p_{1} / k$ for all k in S_{X}.
(b) $p_{k+1}=p_{k} / 2$ for $k=2,3,4$.
(c) $p_{k+1}=p_{k} / 2^{k}$ for $k=2,3,4$.
(d) Can the random variables in parts a, b, and c be extended to take on values in the set $\{1,2, \ldots\}$? If yes, specify the pmf of the resulting random variables. If no, explain why not.

Question 92: [Basic] Problem 4.102.
4.102. (a) Find the characteristic function of the uniform random variable in $[-b, b]$.
(b) Find the mean and variance of X by applying the moment theorem.

Question 93: [Basic] Problem 4.103. Do not be scared by the "Laplacian random variable," which is simply a random variable with sample space being \mathbf{R} and $\operatorname{pdf} f_{X}(x)=$ $0.5 \alpha e^{-\alpha|x|}$ for a positive parameter $\alpha>0$.
4.103. (a) Find the characteristic function of the Laplacian random variable.
(b) Find the mean and variance of X by applying the moment theorem.

Question 94: [Intermediate/Exam Level] Problem 4.106.
4.106. Find the characteristic function of $Y=a X+b$ where X is a Gaussian random variable. Hint: Use Eq. (4.79).

4.7.1 The Characteristic Function

The characteristic function of a random variable X is defined by

$$
\begin{align*}
\Phi_{X}(\omega) & =E\left[e^{j \omega X}\right] \tag{4.79a}\\
& =\int_{-\infty}^{\infty} f_{X}(x) e^{j \omega x} d x, \tag{4.79b}
\end{align*}
$$

where $j=\sqrt{-1}$ is the imaginary unit number. The two expressions on the right-hand side motivate two interpretations of the characteristic function. In the first expression, $\Phi_{X}(\omega)$ can be viewed as the expected value of a function of $X, e^{j \omega X}$, in which the parameter ω is left unspecified. In the second expression, $\Phi_{X}(\omega)$ is simply the Fourier transform of the pdf $f_{X}(x)$ (with a reversal in the sign of the exponent). Both of these interpretations prove useful in different contexts.

Question 95: [Basic] Problem 4.109.
4.109. (a) Find the probability generating function of the geometric random variable.
(b) Find the mean and variance of the geometric random variable from its pgf.

