ECE 302-003, Homework \#7

Due date: Wednesday 10/25/2023, 11:59pm;
https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Question 71: [Basic] Let X be a binomial random variable with $n=3, p=1 / 3$. Let Y denote an exponential random variable with $\lambda=4 / 3$. Plot the cdfs of X and Y.

Question 72: [Basic] Problem 4.11.
4.11. The random variable X is uniformly distributed in the interval $[-1,2]$.
(a) Find and plot the cdf of X.
(b) Use the cdf to find the probabilities of the following events: $\{X \leq 0\}$, $\{|X-0.5|<1\}$, and $C=\{X>-0.5\}$.

Question 73: [Basic] Problem 4.13.
4.13. A random variable X has cdf:

$$
F_{X}(x)= \begin{cases}0 & \text { for } x<0 \\ 1-\frac{1}{4} e^{-2 x} & \text { for } x \geq 0\end{cases}
$$

(a) Plot the cdf and identify the type of random variable.
(b) Find $P[X \leq 2], P[X=0], P[X<0], P[2<X<6], P[X>10]$.

Question 74: [Basic] Suppose the $\operatorname{cdf} F_{X}(x)$ of a random variable X is as follows.

$$
F_{X}(x)= \begin{cases}0 & \text { if } x<-\pi / 2 \\ c(1+\sin (x)) & \text { if }-\pi / 2 \leq x<\pi / 2 \\ 1 & \text { if } \pi / 2 \leq x\end{cases}
$$

1. Explain why c cannot be 1 ?
2. Explain why when $c=1 / 2, X$ is a continuous random variable. (Hint: you should check whether there is any jump or not.)
3. Let $c=1 / 4$. Find the generalized pdf of X using the δ function.

Question 75: [Intermediate/Exam Level] Consider a random variable X with the corresponding pdf being $f_{X}(x)=0.5 e^{-|x|} . Y=\min (X, 0)$. Find out the cdf and pdf of Y. (Hint: Find the cdf first and then find the pdf.)

Question 76: [Intermediate/Exam Level] Suppose X is uniformly randomly distributed between $(0,1)$. $Y=-\ln (x)$. Find out the cdf and pdf of Y. What type of random variables is Y ?

Question 77: [Basic] Problem 4.5.
4.5. Let Y be the difference between the number of heads and the number of tails in the 3 tosses of a fair coin.
(a) Plot the cdf of the random variable Y.
(b) Express $P[|Y|<y]$ in terms of the cdf of Y.

Question 78: [Intermediate/Exam Level] Problem 4.8. [Optional: You should compare your drawing for (a) and (b). Do they look similar?]
4.8. Let ζ be a point selected at random from the unit interval. Consider the random variable $X=(1-\zeta)^{-1 / 2}$.
(a) Sketch X as a function of ζ.
(b) Find and plot the $c d f$ of X.
(c) Find the probability of the events $\{X>1\},\{5<X<7\},\{X \leq 20\}$.

Question 79: [Basic] Problem 4.9.
4.9. The loose hand of a clock is spun hard and the outcome ζ is the angle in the range $[0,2 \pi)$ where the hand comes to rest. Consider the random variable $X(\zeta)=2 \sin (\zeta / 4)$.
(a) Sketch X as a function of ζ.
(b) Find and plot the cdf of X.
(c) Find the probability of the events $\{X>1\},\{-1 / 2<X<1 / 2\},\{X \leq 1 / \sqrt{2}\}$.

Question 80: [Basic] Problem 4.17.

4.17. A random variable X has pdf:

$$
f_{X}(x)= \begin{cases}c\left(1-x^{2}\right) & -1 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find c and plot the pdf.
(b) Plot the cdf of X.
(c) Find $P[X=0], P[0<X<0.5]$, and $P[|X-0.5|<0.25]$.

Question 81: [Basic] Problem 4.18.
4.18. A random variable X has pdf:

$$
f_{X}(x)= \begin{cases}c x\left(1-x^{2}\right) & 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find c and plot the pdf.
(b) Plot the cdf of X.
(c) Find $P[0<X<0.5], P[X=1], P[.25<X<0.5]$.

Question 82: [Basic] (Similar to Problem 4.80.) Let $Y=2 X+3$. Suppose we have already know the pdf of X being $f_{X}(x)$, find the pdf of Y. Hint: Find the cdf of Y first.

Question 83: [Intermediate/Exam Level] Problem 4.76. Please replace $Y=(X)^{+}$by $Y=\max (X, 0)$.
4.76. Let X be a Gaussian random variable with mean 2 and variance 4 . The reward in a system is given by $Y=(X)^{+}$. Find the pdf of Y.

Question 84: [Intermediate/Exam Level] Problem 4.86.
4.86. Let $X=U^{n}$ where n is a positive integer and U is a uniform random variable in the unit interval. Find the cdf and pdf of X.

