ECE 302-003 Homework \#2 Solution
Question 11:

$$
\begin{aligned}
& \text { a. } \Phi(\omega)=\int_{-\infty}^{\infty} e^{j \omega x} f(x) d x \\
& =0,5 a \int_{-\infty}^{\infty} e^{j \omega x-a|x|} d x \\
& =0.5 a\left(\int_{-\infty}^{0} e^{j \omega x+a x} d x+\int_{0}^{\infty} e^{j \omega x-a x} d x\right) \\
& =\operatorname{ora}\left(\left.\frac{1}{j \omega+a} e^{(j \omega+a) x}\right|_{-\infty} ^{0}+\left.\frac{1}{j \omega-a} e^{(j \omega-a) x}\right|_{0} ^{\infty}\right) \\
& =0.5 a\left(\frac{1}{i \omega+a}-\frac{1}{7 \omega-a}-\lim _{\substack{\lim _{x \rightarrow \infty}}} \frac{1}{i \omega+a} e^{(j \omega+a) x}+\lim _{x \rightarrow \infty} \frac{1}{j \omega-a} e^{(-j \omega-a) x}\right) \\
& =05 a\left(\frac{1}{j \omega+a}-\frac{1}{j \omega-a}-\lim _{x \rightarrow \infty} \frac{(j \omega-a) e^{-(j \omega+a) x}-(j \omega+a) e^{(j \omega-a) x}}{j \omega+a)(j \omega-a)}\right) \\
& =0.5 a\left(\frac{1}{j \omega+a}-\frac{1}{j \omega-a}+\left(\lim _{x \rightarrow \infty} \frac{e^{-a x}\left(j \omega\left(e^{-j \omega x}-e^{j \omega x}\right)-a\left(e^{-j \omega x}+e^{-j \omega x}\right)\right)}{\omega^{2}+a^{2}}\right)\right) \\
& =0, S a\left(\frac{1}{j \omega+a}-\frac{1}{j u-a}+\lim _{x \rightarrow \infty} \frac{\left(e^{-a x}\right)^{0}(j \omega \cdot(-2 j \cdot \sin (x \omega))-a(2 \cos (\omega x)))}{\omega^{2}+a^{2}}\right) \\
& =0.5 \dot{a}\left(\frac{1}{j \omega+a}-\frac{1}{j \omega-a}\right)=\frac{a^{2}}{\omega^{2}+a^{2}} \\
& \text { Method I }
\end{aligned}
$$

Method 2:
swap symbols:
let $x \rightarrow w$

$$
\Phi(w)=\int_{-\infty}^{w \rightarrow x} e^{j \omega x} f(x) d x \rightarrow \Phi(x)=\int_{-\infty}^{\infty} e^{j w x} f(w) d w
$$

(1) $\Leftrightarrow \Phi(x)=2 \pi F^{-1}\{f(w)\} \quad, F^{-1}\{ \}$ is inverse Fourier Transform.

By Fourier Transform Table, $f(x) \Leftrightarrow F(w)$
$0.5 a e^{-a|x|} \Leftrightarrow \frac{a^{2}}{a^{2}+w^{2}}$
By duality property,

$$
F(x) \Leftrightarrow 2 \pi f(-\omega)
$$

So, $F(x)=\frac{a^{2}}{a^{2}+x^{2}}=2 \pi F^{-1}\{f(-\omega)\}=2 \pi F^{-1}\left\{0.5 a e^{-a|-\omega|}\right\}$
Swap symbols again:

$$
\Phi(x) \rightarrow \Phi(w)=\frac{a^{2}}{2^{2}+w^{2}} \quad<\Phi(x)
$$

$$
\text { b. } \Phi(0)=\frac{a^{2}}{a^{2}+0}=1
$$

$$
\text { c. } \begin{aligned}
\Phi(x) & =\frac{-2 a^{2}\left(a^{2}-3 w^{2}\right)}{\left(a^{2}+w^{2}\right)^{3}} \\
\Phi^{\prime \prime}(0) & =-\frac{2 a^{4}}{a^{6}}=-\frac{2 q}{a^{2}}
\end{aligned}
$$

Question 12:
a) MAs) $=\int_{100}^{200} e^{s x} \frac{1}{100} d x=\left.\frac{1}{1005} e^{s x}\right|_{100} ^{200}=\frac{e^{2005}-e^{1005}}{1005}$
b) $M(0\rangle=\frac{1-1}{0}=\frac{0}{0}$
need to use L'Hopital's rule

$$
\left.\Rightarrow \frac{200 e^{2005}-100 e^{1005}}{100}\right|_{s=0}=\left.\left(2 e^{2005}-e^{1005}\right)\right|_{s=0}=2-1=1
$$

$\Rightarrow$
C)

$$
\begin{aligned}
& M^{\prime \prime}(s)=\frac{d^{2}}{d s^{2}} M(s)=\frac{e^{100 s}\left(-5000 s^{2}+e^{100 s}\left(20000 s^{2}-200 s+1\right)+100 s-1\right)}{50 s^{3}} \\
& M^{\prime \prime}(0)=\frac{1(0+1(1)+0-1)}{0}=\frac{0}{0}
\end{aligned}
$$

C'Hopital's rule:

$$
\Rightarrow M^{\prime \prime}(0)=\left.\frac{500000 e^{1005}\left(8 e^{100 s}-1\right) s^{2}}{150 s^{2}}\right|_{s=0}
$$

again

$$
\begin{aligned}
& \quad \vec{M}_{(0)}^{\prime 1}=\left.\frac{1000000 e^{1005} 8\left(-505+e^{1005}(800 s+f)-1\right)}{3005}\right|_{5=0} \\
& M_{(0)}^{\prime \prime}=\frac{1000000(1(\delta)-1)}{300}=\frac{700000}{300}=\frac{70000}{3}
\end{aligned}
$$

Question 13:
a)

$$
\begin{aligned}
G(z) & =\sum_{k=-\infty}^{\infty} z^{k} P_{k}=\sum_{k=1}^{\infty} z^{k} \cdot 0.1 \cdot 0.9^{k}=0.1 \cdot 0.9 z \sum_{k=1}^{\infty}(0.9 z)^{k-1} \\
& =\frac{0.09 z}{1-0.9 z} \quad \text { if }|0.9 z|<1 \Leftrightarrow|z|<\frac{10}{9} \\
& =\frac{9 z}{100-90 z} \quad \text { if }|z|<\frac{10}{9}
\end{aligned}
$$

b) $G(1)=\frac{9}{100-90}=\frac{9}{10}$
c)

$$
\begin{aligned}
& G^{\prime}(z)=\frac{d}{d z} G(z)=\frac{9(100-90 z)-9 z \cdot(-90)}{(100-90 z)^{2}} \\
& G^{\prime}(1)=\frac{9 \cdot 10+9 \cdot 90}{10^{2}}=\frac{900}{100}=9
\end{aligned}
$$

Question 14:
a)

b)

$$
\begin{aligned}
g(x, 1) & = \begin{cases}\frac{\lambda e^{-\lambda(x+1)}}{\int_{1}^{\infty} \lambda e^{-\lambda t} d t} & \text { if } x \geqslant 0, y \geqslant 0 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{\lambda e^{-\lambda(x+1)}}{e^{-\lambda}}=\lambda e^{-\lambda x} & \text { if } x \geqslant 0 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

c) $g(x, 3.7)=\left\{\begin{array}{ll}\frac{\lambda e^{-\lambda(x+3.7)}}{e^{-\lambda 3.7}}=\lambda e^{-\lambda x} & \text { if } x \geqslant 0 \\ 0 & \text { else }\end{array}=f(x)\right.$

Question 15:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d y d x \\
& =\int_{0}^{2} \int_{0}^{\infty} x y \frac{1}{x} e^{\frac{-2 x}{x}} d y d x=\int_{0}^{2} \int_{0}^{\infty} y e^{-\frac{2 y}{x}} d y d x \\
& \omega=y \quad d v=e^{-\frac{2 x}{x}} d_{y} \\
& d u=d y \quad v=-\frac{x}{2} e^{\frac{-2 x}{x}} \\
& =\int_{0}^{2}\left[-\left.y \frac{x}{2} e^{-\frac{2 x}{x}}\right|_{0} ^{\infty}+\frac{x}{2} \int_{0}^{\infty} e^{-\frac{2 x}{x}} d y\right] d x \\
& =\int_{0}^{2}\left[(0-0)-\left.\frac{x^{2}}{4} e^{-\frac{2 y}{x}}\right|_{0} ^{\infty}\right] d x \\
& =\int_{0}^{2}-\frac{x^{2}}{4}(0-1) d x=\int_{0}^{2} \frac{1}{4} x^{2} d x \\
& =\left.\frac{1}{12} x^{3}\right|_{0} ^{2}=\frac{8}{12}=\frac{2}{3}
\end{aligned}
$$

Question 16:

$$
d=S_{\text {imp }} \text { to } S_{\text {pace }}=\{(A, A),(B, B),(A, B, A),(A, B, B),(B, A, B),(B, A, A)\}
$$

Where the lefter denotes the winning team
b: If the teams tee evenly matched, and each game is indepationt of the others, then

$$
\begin{aligned}
& P((A, A))=P((A, B))=\frac{1}{4} \\
& P((A, B, A))=P((A, B, B))=P((B, A, A))=A((B, A, B))=\frac{1}{8} \\
& 2\left(\frac{1}{4}\right)+4\left(\frac{1}{8}\right)=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

c: It is reviranable, bat likely not accurate. Games are likely not indepentout, and ore team is probably mere likely towns than another. This is how bookies not ea money.

Question 17:

$$
\begin{aligned}
& \text { d: Sormple } S_{\text {pace }}=\{0,1,2,3,4,5\} \\
& b: A=\{(4,1),(1,4),(5,4),(2,5),(6,3),(3,6)\}
\end{aligned}
$$

Question 18:
d: sample spree $=\left\{\left(A 1, B_{o} b\right.\right.$, chria $),(A l$, Chiis, Bab $),\left(B_{c} b, A 1\right.$, chis $),\left(B_{r} b\right.$, chris, $\left.A 1\right)$,
((hris, Al, Brb), (chiis, Bol, All))
b: $A=\left\{\left(A 1, B_{r b}\right.\right.$, (hris), (A), Chris, Bab $\left.)\right\}$
$B=\{(A 1, B o b$, chris $),($ chris, Bb $b, A 1)\}$
$c=\left\{\left(A, B_{a} b, c h r i s\right),\left(B_{0} b, A l, C h-i\right)\right\}$
$c:\left\{(B / b\right.$, chais, $A 1),\left(C\right.$ arij $\left.\left., A 1, B_{s b} b\right)\right\}$
$d:\{(A \mid, B l, C h r i s)\}$
$e:\left\{\left(A 1, B_{0} b\right.\right.$, chris) $,(A 1$, chris, Bab $),\left(B_{a} b, A l\right.$, chris $),\left(\right.$ Chri $\left.\left., B_{a} b, A t\right)\right\}$

Question 19:
(a) $\left(A \cap B^{c} \cap C^{c}\right) \cup\left(A^{c} \cap B \cap C^{c}\right) \cup\left(A^{c} \cap B^{c} \cap C\right)$

(b) $(A \cap B-A \cap B \cap C) \cup(A \cap C-A \cap B \cap C) \cup(B \cap C-A \cap B \cap C)$

(c) $A \cup B \cup C$

(d) $(A \cap B) \cup(A \cap C-A \cap B \cap C) \cup(B \cap C-A \cap B \cap C)$

(e) $(A \cup B \cup C)^{c}$


Question 20:

$$
(A \cup B \cup C)^{c}=(D \cup C)^{c} \quad \text { whan } B=A \cup B
$$



$$
=D^{c} \cap c^{c} \text { by DedMargan's Rule }
$$

$$
=(A \cup B)^{c} n C^{\prime} \text { by back-substitutiy }
$$

$$
=\left(A^{c} \cap B^{c}\right) \cap C^{c} \text { by DeMorgon's Ande }
$$

$$
=A^{c} \cap B^{c} \cap C^{c}
$$


$(A \cup B \cup C)^{\circ}:$


Equivalant

## Question 21:

```
In [1]:
import numpy as np
def play_game():
    # -- the game prize is hidden behind a door --
    DOORS = ["A","B","C"]
    prize = npr.choice(DOORS,1,p = [1/3, 1/3, 1/3]).item()
    # -- the player chooses a door .-
    pick = npr.choice(DOORS,1,p = [1/3, 1/3, 1/3]).item()
    # -. the host reveals a non-chosen door without the prize ..
    REM_NO_PRIZE = set(DOORS) - set(prize) - set(pick)
    revealed = npr.choice(list(REM_NO_PRIZE),1).item()
    # -- the player can swap or stay --
    swap = (set(DOORS) - set(pick) - set(revealed))}\cdot\mathrm{ pop()
    # -- compute policy choices --
    return pick==prize,swap==prize
def main():
    NUM_GAMES = 10**4
    num_wins = [0,0]
    for 'n in range(NUM_GAMES):
        w0,w1 = play_game()
        num_wins[0] += we
        num_wins[1] += w1
    print(num_wins)
    print("Stīcking: ",num_wins[0], ", winning rate = ", num_wins[0]/NUM_GAMES)
    print("Swapping: ",num_wins[1], ", winning rate = ", num_wins[1]/NUM_GAMES)
if
    __name__ == "__main__":
    main()
```

[3312, 6688]
Sticking: 3312, winning rate $=0.3312$
Swapping: 6688, winning rate $=0.6688$
(c) Swapping doors yields the higher chance to win the prize.

## Question 22:

```
import numpy as np
import numpy.random as npr
def play_game():
    # -. the game prize is hidden behind a door -.
    DOORS = ["A","B","C"]
    prize = npr.choice(DOORS,1,p = [0.5, 0.3, 0.2]).item()
    # -- the player chooses a door --
    pick = npr.choice(DOORS,1,p = [0.2, 0.4, 0.4]).item()
    # -- the host reveals a non-chosen door without the prize .-
    REM_NO_PRIZE = set(DOORS) - set(prize) - set(pick)
    revealed = npr.choice(list(REM_NO_PRIZE),1).item()
    # -- the player can swap or stay --
    swap = (set(DOORS) - set(pick) - set(revealed)).pop()
    # .- compute policy choices .-
    return pick==prize,swap==prize
def main():
    NUM_GAMES = 10**4
    num_wins = [0,0]
    for - n in range(NUM_GAMES):
        w0,w1 = play_game()
        num_wins[0] += we
        num_wins[1] += w1
    print(num_wins)
    print("Sticking: ",num_wins[0], ", winning rate = ", num_wins[0]/NUM_GAMES)
    print("Swapping: ",num_wins[1], ", winning rate = ", num_wins[1]/NUM_GAMES)
if __name__ == "__main__":
    main()
```

[2995, 7005]
Sticking: 2995, winning rate $=0.2995$
Swapping: 7005, winning rate $=0.7005$
(c) Swapping doors yields the higher chance to win the prize.
[Optional]:
Winning rate of "switching doors"

$$
\begin{aligned}
= & (1-\operatorname{Pr}(\operatorname{prize} \text { at } A)) \cdot \operatorname{Pr}(\text { first pink } A)+(1-\operatorname{Pr}(\text { prize at } B)) \cdot \operatorname{Pr}(\text { firstprk } B) \\
& +(1-\operatorname{Pr}(\text { prize at } C)) \cdot \operatorname{Pr}(\text { first pink } C)
\end{aligned}
$$

Winning rate of "using the original choice"

$$
\begin{aligned}
= & \operatorname{Pr}(\text { prize at } A) \cdot \operatorname{Pr}(\text { first pick } A)+\operatorname{Pr}(\text { prize at } B) \cdot \operatorname{Pr}(\text { first pick } B) \\
& +\operatorname{Pr}(\text { prize at } C) \cdot \operatorname{Pr}(\text { first pick } C)
\end{aligned}
$$

