ECE 302-003 Homework \#13 Solution
Fall 2023

Question 128:
1.

$$
\begin{aligned}
E(X Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X}(x) f_{Y}(y) d x d y \quad \because X \text { and } Y \text { are independent. } \\
& =\left[\int_{-\infty}^{\infty} x f_{X}(x) d x\right]\left[\int_{-\infty}^{\infty} y f_{Y}(y) d y\right] \\
& =E(X) E(Y)=m_{X} m_{Y} \#
\end{aligned}
$$

2.

$$
\begin{aligned}
& Z=X+Y \\
& \begin{aligned}
E(Z) & =E(X+Y)=E(X)+E(Y)=m_{X}+m_{Y} \\
E\left(Z^{2}\right) & =E\left(X^{2}+2 X Y+Y^{2}\right)=E\left(X^{2}\right)+E\left(Y^{2}\right)+2 E(X) E(Y) \\
& =\operatorname{Var}(X)+(E(X))^{2}+\operatorname{Var}(Y)+(E(Y))^{2}+2 E(X) E(Y) \\
& =\sigma_{X}^{2}+m_{X}^{2}+\sigma_{Y}^{2}+m_{Y}^{2}+2 m_{X} m_{Y}
\end{aligned}
\end{aligned}
$$

3. $\operatorname{Var}(z)=E\left(z^{2}\right)-(E(z))^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}+m_{x}^{2}+m_{y}^{2}+2 m_{x} m_{y}-\left(m_{x}^{2}+m_{y}^{2}\right.$

$$
=\sigma_{x}^{2}+\sigma_{y}^{2} \#
$$

Question 129:

From lecture notes, for 2 -dim joint Gaussian R.V. (X, Y)

$$
f_{X Y}(x, y)=\frac{\exp \left\{-\frac{\left(\frac{x-m_{x}}{\sigma_{x}}\right)^{2}-2 \rho\left(\frac{x-m_{x}}{\sigma_{x}}\right)\left(\frac{y-m_{y}}{\sigma_{y}}\right)+\left(\frac{y-m_{y}}{\sigma_{y}}\right)^{2}}{2\left(1-\rho^{2}\right)}\right\}}{2 \pi \sigma_{x} \sigma_{Y}\left(\sqrt{1-\rho^{2}}\right)}
$$

(1) $\sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}=c$
(2) $-\frac{1}{2\left(1-\rho^{2}\right) \sigma_{x}{ }^{2}}=\frac{-1}{2}$
(3) $-\frac{1}{2\left(1-P^{2}\right) \sigma_{y}^{2}}=\frac{-1}{2} \cdot 4=-2$
(4) $\frac{e}{\left(1-e^{2}\right) \sigma_{X} \sigma_{y}}=\frac{-1}{2} \cdot(-3)=\frac{3}{2}$
$\left\{\frac{\text { (4) }^{2}}{\text { (2) } 3)^{2}}: 4 \rho^{2}=\frac{q}{4} \Rightarrow \rho=\frac{3}{4}\right.$
substitute ρ into (2) $\Rightarrow \sigma_{x}^{2}=\frac{16}{7}$

$$
\text { e into (3) } \Rightarrow \sigma_{y}^{2}=\frac{4}{7}
$$

From (1) $\Rightarrow C=\frac{2}{\sqrt{7}}$
Next, find the coefficients in front of x and y :

$$
\left\{\begin{array} { l }
{ \frac { - 1 } { 2 (1 - \rho ^ { 2 }) } (\frac { - 2 m _ { X } } { \sigma _ { X } ^ { 2 } } + \frac { 2 \rho _ { m _ { Y } } } { \sigma _ { X } \sigma _ { Y } }) = \frac { - 1 } { 2 } \cdot (- 2) } \\
{ \frac { - 1 } { 2 (1 - \rho ^ { 2 }) } (\frac { 2 m _ { X } } { \sigma _ { X } \sigma _ { Y } } + \frac { - 2 m _ { Y } } { \sigma _ { Y } { } ^ { 2 } }) = \frac { - 1 } { 2 } \cdot 3 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-\frac{1}{8} m_{X}+\frac{21}{16} m_{Y}=-\frac{7}{8} \\
\frac{26}{7} \\
\frac{21}{16} m_{X}-\frac{7}{2} m_{Y}=\frac{-3}{2} \cdot \frac{-7}{8}=\frac{21}{16}
\end{array}\right.\right.
$$

From (5): $m_{X}=1+\frac{3}{2} m_{Y}$ substituted into (6): $m_{Y}=0 \Rightarrow m_{X}=1$
Thus, $E[X]=m_{X}=1, E[Y]=m_{Y}=0$

$$
\begin{aligned}
& \operatorname{Var}(X)=\sigma_{x}^{2}=\frac{16}{7}, \operatorname{Var}(Y)=\sigma_{y}^{2}=\frac{4}{7} \\
& \operatorname{Cov}(X, Y)=e \sigma_{x} \sigma_{y}=\frac{3}{4} \cdot \frac{4}{\sqrt{7}} \cdot \frac{2}{\sqrt{7}}=\frac{6}{7}
\end{aligned}
$$

Question 130:

$$
\begin{gathered}
E[Y]=0 \quad \sigma_{1}=1 \quad \sigma_{2}=2 \quad E[X \mid Y]=\frac{1}{4} Y+1 \\
E[X \mid Y]=m_{1}+\rho_{X, Y} \frac{\sigma_{1}}{\sigma_{2}}\left(Y-m_{2}\right) \\
=m_{1}+\rho_{X, Y}\left(\frac{1}{2}\right)(Y-0)=m_{1}+\frac{1}{2} \rho_{X, Y} Y=\frac{1}{4} Y+1 \\
\Rightarrow m_{1}=1 \quad \& \quad \rho_{X, Y}=\frac{1}{2}
\end{gathered}
$$

$$
\begin{aligned}
f_{X, y}(x, y) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho_{x, Y}^{2}}} e^{-\frac{1}{2\left(1-\rho_{x, y}^{2}\right)}}\left[\left(\frac{x-m_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{y-m_{2}}{\sigma_{2}}\right)^{2}-2 \rho_{x, y}\left(\frac{x-a_{1}}{\sigma_{1}}\right)\left(\frac{y-m_{2}}{\sigma_{2}}\right)\right] \\
& =\frac{1}{2 m(1)(2) \sqrt{1-\frac{1}{4}}} e^{-\frac{1}{2\left(1-\frac{1}{4}\right)}\left[\left(\frac{x-1}{1}\right)^{2}+\left(\frac{y-0}{2}\right)^{2}-2\left(\frac{1}{2}\right)\left(\frac{x-1}{1}\right)\left(\frac{y-0}{2}\right)\right)} \\
& =\frac{1}{2 \pi \sqrt{3}} e^{-\frac{2}{3}\left[(x-1)^{2}+\frac{y^{2}}{4}-(x-1)\left(\frac{y}{2}\right)\right]}
\end{aligned}
$$

Question 131:

Question 132:

$$
\begin{aligned}
& d: E[z]=E[X+y)=m_{x}+m_{y}=(-2=-1 \\
& E\left[z^{2}\right]=E\left[x^{2}\right]+2 E[x y]+E\left[y^{2}\right] \\
&=\left(\sigma_{x}^{2}+m_{x}^{2}\right)+2(\operatorname{Cov}(x, y)+E[x] E[y])+\left(\sigma_{y}^{2}+m_{y}^{2}\right) \\
&=(2+1)+2(1+(1)(-2))+(3+4) \\
&=3+2(-1)+7=10-2=8 \\
& \operatorname{Var}(z)=E\left[z^{2}\right]-(E[z])^{2}=8-(-1)^{2}=7 \\
& 6: E[x z]=E\left[x^{2}+X y\right]=E\left[x^{2}\right]+E[x y]=\left(\sigma_{x}^{2}+m_{x}^{2}\right)+\left(\operatorname{Cov}(x, y)+m_{x} m_{y}\right) \\
&=(2+1)+(1-2)=3-1=2 \\
& \operatorname{Cov}(x, z)=E[x z]-E[x] E[z]=2-(1)(-1)=3 \\
& \rho_{X Z}=\frac{\operatorname{Cov}(x, z)}{\sigma_{x} \sigma_{z}}=\frac{3}{(\sqrt{2})(\sqrt{7})}=\frac{3}{\sqrt{14}}
\end{aligned}
$$

Question 133:

$$
\begin{aligned}
& P(x=-1)=P(x=1)=\frac{1}{2} \quad N(\sim N(0,1) \quad x, N \text { independent } \quad y=x \neq N \\
& \text { A: } E[y]=E[x]+E[x]=0 \\
& E\left[Y^{2}\right]=E\left[X^{2}\right]+2 E[X N]+E\left[N^{2}\right] \\
& =\left((1)\left(\frac{1}{2}\right)+(1)\left(\frac{1}{2}\right)\right)+2(0)(0)+\left(1+0^{2}\right)=2 \\
& \operatorname{Var}(Y)=2 \\
& b: \operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y] \\
& =E\left[X^{2}\right]+E[X] E[N]-0=(1)+0=1 \\
& p_{x, y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}=\frac{1}{(1) \sqrt{2}}=\frac{1}{\sqrt{2}} \\
& c: \\
& f_{x y}(x, y)=f_{y}(y \mid x) f_{x}(x) \\
& =\frac{1}{2} \delta(x+1) \frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-1)^{2}}{2}}+\frac{1}{2} \delta(x+1) \sqrt{\sqrt{2 \pi}} e^{-\frac{(x+1)^{2}}{2}} \\
& \hat{x}=E[x / y=y] \\
& \left.f_{y}(y)=\int_{-\infty}^{\infty} f_{y y}\left(x_{y}\right)\right) d x=\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\mid y-2)^{2}}{2}}+\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(y+1)^{2}}{2}} \\
& f_{x, y}(x \mid y)=\frac{f_{x y}(x y)}{f_{y}(y)}=\frac{\delta(x-1) e^{-\left(\frac{(x-1)^{2}}{2}\right.}+\delta(x+1) e^{-(x+2)^{2}}}{e^{-\left(\frac{(x-1)^{2}}{2}\right.}+e^{-\left(\frac{(x+1)^{2}}{2}\right.}} \\
& \hat{x}=\int_{-\infty}^{\infty} x f_{x \mid y}(x \mid y) d x=\frac{(1) e^{-\frac{(y-1)^{2}}{2}}+(-1) e^{-(x+1)^{2}}}{e^{-\frac{(y-1)^{2}}{2}}+e^{-\left(x+1^{2}\right.}}
\end{aligned}
$$

d:

e:

$$
\hat{x}=\max _{x} f_{x^{\prime \prime}}\left(x(y)=\left\{\begin{array}{cc}
1 & y>0 \\
-1 & y<0
\end{array}\right.\right.
$$

Question 134:
di)

$$
\begin{aligned}
& E[x]=E[y]=0 \\
& E\left[x^{2}\right]=(1)\left(\frac{1}{3}\right)+(0)\left(\frac{1}{3}\right)+(1)\left(\frac{1}{3}\right)=\frac{2}{3}=E\left[y^{2}\right] \\
& V_{d} r(x)=V_{N r}(y)=\frac{2}{3} \\
& \rho_{x, y}=\frac{\operatorname{Cov}(x, y)}{\sigma_{x} \sigma_{y}}=\frac{E[x Y y-E[x] E[y]}{\frac{2}{3}}=\frac{\left[(-1)(-1)\left(\frac{1}{6}\right)+(1)(-1)\left(\frac{1}{6}\right)\right]-(0)(0)}{\frac{2}{3}}=\frac{3}{2}(0)=0
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& E[x]=E[y]=0 \\
& V_{\operatorname{rr}}(x)=V_{r r}(y)=\frac{2}{3} \\
& \rho_{x_{y}}=0
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& E[X]=E[Y]=0 \\
& V_{a r}(X)=V_{a r}(Y)=\frac{2}{3} \\
& \rho_{x y}=\frac{\left[(-1)(-1)\left(\frac{1}{3}\right)+(1)(1)\left(\frac{1}{3}\right)\right]-(0)(0)}{\frac{2}{3}}=\frac{3}{2}\left(\frac{2}{3}\right)=1
\end{aligned}
$$

$\alpha: y=\rho_{x, y} \sigma_{y} \frac{x-E[x]}{\sigma_{x}}+E[y]$
(i) $\hat{y}= \begin{cases}-\frac{1}{2} & x= \pm 1 \\ 0 & x=0\end{cases}$
(ii) $\hat{y}=0$
(iii) ${ }_{1}=\chi$
$b:(:) \hat{y}=E\left[X_{X}\right]=0$
(ii) $\hat{Y}=E[Y \mid X]=0$
(iii) $\hat{Y}=E[X \mid X]=X$
(c) $p_{Y}(j \mid X=k)=\frac{P[X=k \mid Y=j] P[Y=j]}{P[X=k]}=p_{X}(k \mid Y=j]$

Since $P[y=j]=1 / 3=P[x=k]$
$\Rightarrow M L$ ad MAP estmates the same

$$
\begin{aligned}
& \hat{y}(-1)=0 w-1 \\
& \hat{y}(0)=1 \\
& \hat{y}(+1)=0 w 1
\end{aligned}
$$

(i)

$$
\begin{array}{ll}
\hat{y}(-1)=0,1,0-1 & \hat{y}(-1)=-1 \\
\hat{y}(0)=11 & \hat{y}(0)=0 \\
\hat{y}(+1)=11 & \hat{y}(+1)=+1
\end{array}
$$

(ii)

Question 135:

$$
\begin{aligned}
& f_{x, y}(x y)=\left\{\begin{array}{cc}
k(x+y) & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & \text { ow }
\end{array}\right. \\
& \int_{0}^{1} \int_{0}^{1} k(x+y) d x d y=k \int_{0}^{1}\left(\frac{1}{2}+y\right) d y=k\left(\frac{1}{2}+\frac{1}{2}\right) \Rightarrow k=1 \\
& E[x]=E[y]=\int_{0}^{1} \int_{0}^{1}\left(x^{2}+x y\right) d x d y=\int_{0}^{1}\left(\frac{1}{3}+\frac{1}{2} y\right) d y=\frac{1}{3}+\frac{1}{4}=\frac{7}{12} \\
& E\left[x^{2}\right]=E\left[y^{2}\right)=\int_{0}^{1} \int_{0}^{1}\left(x^{3}+x^{2} y\right) d x d y=\int_{0}^{1}\left(\frac{1}{4}+\frac{1}{3} y\right) d y=\frac{1}{4}+\frac{1}{6}=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{5}{12} \\
& E[X Y]=\int_{0}^{1} \int_{0}^{1}\left(x^{2} y+x y^{2}\right) d x d y=\int_{0}^{1}\left(\frac{1}{3} y+\frac{1}{2} y^{2}\right) d y=\frac{1}{6}+\frac{1}{6}=\frac{1}{3} \\
& \operatorname{Var}(X)=\operatorname{Var}(Y)=\frac{5}{12}-\frac{49}{144}=\frac{60-49}{144}=\frac{11}{144} \\
& P_{X Y}=\frac{E[X Y]-E[X] E[Y]}{\sigma_{X} \sigma_{y}}=\frac{\frac{1}{3}-\frac{49}{144}}{\frac{11}{144}}=\frac{144}{11}\left(\frac{48-49}{144}\right)=-\frac{1}{11} \\
& \alpha: \hat{y}=p_{x y} \sigma_{y} \frac{X-E[x]}{\sigma_{x}}+E[y]=-\frac{1}{11}\left(X-\frac{7}{12}\right)+\frac{7}{12} \\
& \text { b: } \hat{Y}=E[Y \mid X]=\int_{0}^{1} y f_{Y \mid X}(y \mid x) d y \quad f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)} \\
& f_{x}(x)=\int_{0}^{1}(x+y) d y=\frac{1}{2}+x \\
& f_{Y(X}(x / x)=\frac{x+x}{x+\frac{1}{2}} \\
& \hat{Y}=\int_{0}^{1} y \frac{x+y}{x+\frac{1}{2}} d y=\frac{1}{x+\frac{1}{2}} \int_{1}^{1}\left(y^{2}+x y\right) d y=\frac{1}{x+\frac{1}{2}}\left(\frac{1}{3}+x\right)=\frac{x+\frac{1}{3}}{x+\frac{1}{2}}
\end{aligned}
$$

c

MAP

$$
\begin{aligned}
& \xrightarrow[0]{\frac{x}{x+\frac{1}{2}} \square_{1}^{\frac{x+1}{x+\frac{1}{2}}}}{ }_{0} \\
& f(y \mid x)=\frac{x+y}{x+\frac{1}{2}} \quad 0 \leq y \leq 1 \\
& \max y=1 \Rightarrow \hat{Y}=1
\end{aligned}
$$

ML

$$
f(x \mid y)=\frac{x+y}{y+0.5}, \frac{\partial f(x \mid y)}{\partial x}=\frac{0.5-x}{(y+0.5)^{2}}
$$

When $x<0.5$, the derivative is positive, so $f(x \mid y)$ is increasing. Then maximum value is achieved when $\mathrm{y}=1 . \mathrm{ML}(\mathrm{x})=1$.

When $x>0.5$, the derivative is negative, so $f(x \mid y)$ is decreasing. Then maximum value is achieved when $\mathrm{y}=0 . \mathrm{ML}(\mathrm{x})=0$.

