ECE 302-003, Homework \#13

It is a self-exercise. No need to turn in the homework.
https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Question 128: [Intermediate/Exam Level] Consider two random variables X and Y with means and variances being $\left(m_{X}, \sigma_{X}^{2}\right)$ and $\left(m_{Y}, \sigma_{Y}^{2}\right)$ respectively. We further assume that X and Y are independent.

1. Find out the value of $E(X Y)$ in terms of $\left(m_{X}, \sigma_{X}^{2}\right)$ and $\left(m_{Y}, \sigma_{Y}^{2}\right)$.
2. Let $Z=X+Y$. Find out the values of $E(Z)$ and $E\left(Z^{2}\right)$.
3. Find out the value of $\operatorname{Var}(Z)$.

Question 129: [Basic] Problem 5.111. There is a typo in the textbook. The coefficient of the joint pdf should be $\frac{1}{2 \pi c}$ for some constant c. Unfortunately, in the textbook the constant c is missing and the question only states $\frac{1}{2 \pi}$.

5.111. Let X and Y be jointly Gaussian random variables with pdf

$$
\begin{aligned}
& \qquad f_{X, Y}(x, y)=\frac{\exp \left\{\frac{-1}{2}\left[x^{2}+4 y^{2}-3 x y+3 y-2 x+1\right]\right\}}{2 \pi} \text { for all } x, y \\
& \text { Find } E[X], E[Y], \operatorname{VAR}[X], \operatorname{VAR}[Y] \text {, and } \operatorname{Cov}(X, Y) \text {. }
\end{aligned}
$$

Question 130: [Basic] Problem 5.112.
5.112. Let X and Y be jointly Gaussian random variables with $E[Y]=0, \sigma_{1}=1, \sigma_{2}=2$, and
$E[X \mid Y]=Y / 4+1$. Find the joint pdf of X and Y.

Question 131: [Basic] Problem 5.114(a,b,d,f). You only need to print out your figures. There is no need to turn in your MATLAB codes.

5.114. Use a plotting program (as provided by Octave or MATLAB) to show the pdf for jointly

 Gaussian zero-mean random variables with the following parameters:(a) $\sigma_{1}=1, \sigma_{2}=1, \rho=0$.
(b) $\sigma_{1}=1, \sigma_{2}=1, \rho=0.8$.
(c) $\sigma_{1}=1, \sigma_{2}=1, \rho=-0.8$.
(d) $\sigma_{1}=1, \sigma_{2}=2, \rho=0$.
(e) $\sigma_{1}=1, \sigma_{2}=2, \rho=0.8$.
(f) $\sigma_{1}=1, \sigma_{2}=10, \rho=0.8$.

Question 132: [Intermediate/Exam Level] Suppose the means and variances of random variables X and Y is $m_{X}=1, \sigma_{X}^{2}=2, m_{Y}=-2$, and $\sigma_{Y}^{2}=3$ respectively. Suppose we also know that the covariance between X and Y is $\operatorname{Cov}(X, Y)=1$. Let $Z=X+Y$.

1. Find the mean and the variance of Z. Note: X and Y are not independent this time.
2. Find $\operatorname{Cov}(X, Z)$ and the correlation coefficient $\rho_{X, Z}$.

Question 133: [Intermediate/Exam Level] Suppose X is equally likely to be -1 and 1 . N is a standard Gaussian. X and N are independent. $Y=X+N$.

1. Find the mean and the variance of Y.
2. Find $\operatorname{Cov}(X, Y)$ and the correlation coefficient $\rho_{X, Y}$.
3. What is the minimum mean square error estimator of X given $Y=y$?
4. The answer of the previous question can be expressed as a function $g(y)$. Use MATLAB to plot $g(y)$ for the range $y=-2$ to 2 .
5. What is the maximum a posteriori probability (MAP) detector of X given $Y=y$.

Question 134: [Intermediate/Exam Level] Problem 6.68(b,c). Please assume the joint distribution of X and Y is described by (i) in the given table. Namely, ignore the joint distributions described in (ii) and (iii) of the table.
6.68. Let X and Y be discrete random variables with three possible joint pmf's:

(i)	(ii)	(iii)
$X / Y-1001$	$X / Y-1 \quad 0 \quad 1$	$X / Y-10$
		$\begin{array}{lllll}-1 & 1 / 3 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 1 / 3\end{array}$	0-1/9 1/9 1/9	$\begin{array}{lllll}0 & 0 & 1 / 3 & 0\end{array}$
1/6 1/6 0	1 1/9 1/9 1/9	$\begin{array}{lllll}0 & 0 & 1 / 3\end{array}$

(a) Find the minimum mean square error linear estimator for Y given X.
(b) Find the minimum mean square error estimator for Y given X.
(c) Find the MAP and ML estimators for Y given X.
(d) Compare the mean square error of the estimators in parts a, b, and c .

Question 135: [Intermediate/Exam Level] Problem 6.69(b,c).
6.69. Repeat Problem 6.68 for the continuous random variables X and Y in Problem 5.26.
5.26. Let X and Y have joint pdf:

$$
f_{X, Y}(x, y)=k(x+y) \quad \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 .
$$

(a) Find k.
(b) Find the joint cdf of (X, Y).
(c) Find the marginal pdf of X and of Y.
(d) Find $P[X<Y], P\left[Y<X^{2}\right], P[X+Y>0.5]$.

