ECE 302-003, Homework #13It is a self-exercise. No need to turn in the homework.

https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Question 128: [Intermediate/Exam Level] Consider two random variables X and Y with means and variances being (m_X, σ_X^2) and (m_Y, σ_Y^2) respectively. We further assume that X and Y are independent.

- 1. Find out the value of E(XY) in terms of (m_X, σ_X^2) and (m_Y, σ_Y^2) .
- 2. Let Z = X + Y. Find out the values of E(Z) and $E(Z^2)$.
- 3. Find out the value of $\operatorname{Var}(Z)$.

Question 129: [Basic] Problem 5.111. There is a typo in the textbook. The coefficient of the joint pdf should be $\frac{1}{2\pi c}$ for some constant c. Unfortunately, in the textbook the constant c is missing and the question only states $\frac{1}{2\pi}$.

Question 130: [Basic] Problem 5.112.

5.112. Let X and Y be jointly Gaussian random variables with E[Y] = 0, $\sigma_1 = 1$, $\sigma_2 = 2$, and E[X | Y] = Y/4 + 1. Find the joint pdf of X and Y.

Question 131: [Basic] Problem 5.114(a,b,d,f). You only need to print out your figures. There is no need to turn in your MATLAB codes.

5.114.	5.114. Use a plotting program (as provided by Octave or MATLAB) to show the pdf for joint Gaussian zero-mean random variables with the following parameters:						
	(a)	$\sigma_1 = 1, \sigma_2 = 1, \rho = 0.$					
	(b)	$\sigma_1 = 1, \sigma_2 = 1, \rho = 0.8.$					
	(c)	$\sigma_1 = 1, \sigma_2 = 1, \rho = -0.8.$					
	(d)	$\sigma_1 = 1, \sigma_2 = 2, \rho = 0.$					
	(e)	$\sigma_1 = 1, \sigma_2 = 2, \rho = 0.8.$					
	(f)	$\sigma_1 = 1, \sigma_2 = 10, \rho = 0.8.$					

Question 132: [Intermediate/Exam Level] Suppose the means and variances of random variables X and Y is $m_X = 1$, $\sigma_X^2 = 2$, $m_Y = -2$, and $\sigma_Y^2 = 3$ respectively. Suppose we also know that the covariance between X and Y is Cov(X, Y) = 1. Let Z = X + Y.

- 1. Find the mean and the variance of Z. Note: X and Y are not independent this time.
- 2. Find Cov(X, Z) and the correlation coefficient $\rho_{X,Z}$.

Question 133: [Intermediate/Exam Level] Suppose X is equally likely to be -1 and 1. N is a standard Gaussian. X and N are independent. Y = X + N.

- 1. Find the mean and the variance of Y.
- 2. Find Cov(X, Y) and the correlation coefficient $\rho_{X,Y}$.
- 3. What is the minimum mean square error estimator of X given Y = y?
- 4. The answer of the previous question can be expressed as a function g(y). Use MATLAB to plot g(y) for the range y = -2 to 2.
- 5. What is the maximum a posteriori probability (MAP) detector of X given Y = y.

Question 134: [Intermediate/Exam Level] Problem 6.68(b,c). Please assume the joint distribution of X and Y is described by (i) in the given table. Namely, ignore the joint distributions described in (ii) and (iii) of the table.

6.68. Let 2	X and Y be disc	rete random vari	ables with th	hree possible join	t pmf's:			
		(i)	(ii)	(iii)				
A Barris	X/Y	$-1 \ 0 \ 1 \ X/Y$ $1/6 \ 1/6 \ 0 \ -1$	$-1 \ 0 \ 1$ $1/9 \ 1/9 \ 1/9$	X/Y - 1 0 1 -1 1/3 0 0				
testing where	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/9 1/9 1/9 1/9 1/9 1/9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
and an angel		1/0 1/0 0 1	117 117 117					
 (a) Find the minimum mean square error linear estimator for Y given X. (b) Find the minimum mean square error estimator for Y given X. (c) Find the MAP and ML estimators for Y given X. 								
(d)	(d) Compare the mean square error of the estimators in parts a, b, and c.							

Question 135: [Intermediate/Exam Level] Problem 6.69(b,c).

