ECE 302-003, Homework #12 It is a self-exercise. No need to turn in the homework.

https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Question 118: [Intermediate/Exam Level] Suppose Θ is uniformly distributed in the interval $(0, 2\pi)$. Let $X = \cos(\Theta)$ and $Y = \sin(\Theta)$.

- 1. Find E(Y).
- 2. Find E(XY).
- 3. Let h(x) = E(Y|X = x), where x is the input parameter that is between (-1, 1). Find out the expression of h(x).
- 4. Does E(h(X)) = E(Y)?

Question 119: [Intermediate/Exam Level] Continue from the previous question.

- 1. Are X and Y orthogonal?
- 2. Are X and Y correlated?
- 3. Find out the covariance and the correlation coefficient of X and Y.

Question 120: [Basic] Problem 5.47.

5.47. Let X and Y be independent random variables. Find an expression for the probability of the following events in terms of $F_X(x)$ and $F_Y(y)$. (a) $\{a < X \le b\} \cap \{Y > d\}.$ (b) $\{a < X \le b\} \cap \{c \le Y < d\}.$ (c) $\{|X| < a\} \cap \{c \le Y \le d\}.$

Question 121: [Intermediate/Exam Level] Problem 5.58.

-, respectively. **5.58.** Find $E[X^2e^Y]$ where X and Y are independent random variables, X is a zero-mean, unit-variance Gaussian random variable, and Y is a uniform random variable in the interval [0, 3].

... puiu

Question 122: [Basic] Problem 5.40.

Question 123: [Basic] Problem 5.61.

5.61. For the three pairs of discrete random variables in Problem 5.11, find the correlation and covariance of X and Y, and indicate whether the random variables are independent, orthogonal, or uncorrelated.

Question 124: [Basic] Problem 5.65.

5.65. Find the correlation and covariance of X and Y in Problem 5.26. Determine whether X and Y are independent, orthogonal, or uncorrelated.

5.26. Let X and Y have joint pdf:

 $f_{X,Y}(x, y) = k(x + y)$ for $0 \le x \le 1, 0 \le y \le 1$.

(a) Find k.

(b) Find the joint cdf of (X, Y).

- (c) Find the marginal pdf of X and of Y.
- (d) Find P[X < Y], $P[Y < X^2]$, P[X + Y > 0.5].

Question 125: [Intermediate/Exam Level] Problem 5.71.

- 5.71. The output of a channel Y = X + N, where the input X and the noise N are independent, zero-mean random variables.
 - (a) Find the correlation coefficient between the input X and the output Y.
 - (b) Suppose we estimate the input X by a linear function g(Y) = aY. Find the value of a that minimizes the mean squared error $E[(X aY)^2]$.
 - (c) Express the resulting mean-square error in terms of σ_X / σ_N .

Question 126: [Basic] Problem 5.76(a).

- 5.76. (a) Find $p_X(x | y)$ for the communication channel in Problem 5.3.
 - (b) For each value of y, find the value of x that maximizes $p_X(x | y)$. State any assumptions about p and p_e .
 - (c) Find the probability of error if a receiver uses the decision rule from part b.
- **5.3.** The input X to a communication channel is "-1" or "1", with respective probabilities 1/4 and 3/4. The output of the channel Y is equal to: the corresponding input X with probability $1 p p_e$; -X with probability p; 0 with probability p_e .
 - (a) Describe the underlying space S of this random experiment and show the mapping from S to S_{XY} , the range of the pair (X, Y).
 - (b) Find the probabilities for all values of (X, Y).
 - (c) Find $P[X \neq Y], P[Y = 0].$

Question 127: [Intermediate/Exam Level] Problem 5.80(a,b,d). Also find E(Y) and E(h(X)) where h(x) = E(Y|X = x).

5.80. (a) Find $f_Y(y|x)$ in Problem 5.26. (b) Find P[Y > X|x]. (c) Find P[Y > X] using part b. (d) Find E[Y|X = x]. 5.26. Let X and Y have joint pdf: $f_{X,Y}(x, y) = k(x + y)$ for $0 \le x \le 1, 0 \le y \le 1$. (a) Find k. (b) Find the joint cdf of (X, Y). (c) Find the marginal pdf of X and of Y.

(d) Find P[X < Y], $P[Y < X^2]$, P[X + Y > 0.5].