ECE 302-003, Homework \#12
It is a self-exercise. No need to turn in the homework.
https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Question 118: [Intermediate/Exam Level] Suppose Θ is uniformly distributed in the interval $(0,2 \pi)$. Let $X=\cos (\Theta)$ and $Y=\sin (\Theta)$.

1. Find $E(Y)$.
2. Find $E(X Y)$.
3. Let $h(x)=E(Y \mid X=x)$, where x is the input parameter that is between $(-1,1)$. Find out the expression of $h(x)$.
4. Does $E(h(X))=E(Y)$?

Question 119: [Intermediate/Exam Level] Continue from the previous question.

1. Are X and Y orthogonal?
2. Are X and Y correlated?
3. Find out the covariance and the correlation coefficient of X and Y.

Question 120: [Basic] Problem 5.47.

5.47. Let X and Y be independent random variables. Find an expression for the probability of the following events in terms of $F_{X}(x)$ and $F_{Y}(y)$.
(a) $\{a<X \leq b\} \cap\{Y>d\}$.
(b) $\{a<X \leq b\} \cap\{c \leq Y<d\}$.
(c) $\{|X|<a\} \cap\{c \leq Y \leq d\}$.

Question 121: [Intermediate/Exam Level] Problem 5.58.
5.58. Find $E\left[X^{2} e^{Y}\right]$ where X and Y are independent random variables, X is a zero-mean,
unit-variance Gaussian random variable, and Y is a unitur unit-variance Gaussian random variable, and Y is a uniform random variable in the
interval $[0,3]$.

Question 122: [Basic] Problem 5.40.
5.40. Determine which of the joint pmfs in Problem 5.11 correspond to independent pairs of random variables.
5.11. (a) Find the marginal pmf's for the pairs of random variables with the indicated joint pmf.

(i)				(ii)				(iii)			
X / Y	-1	0	1	X / Y	-1	0	1	X / Y	-1	0	1
-1	1/6	1/6	0	-1	1/9	1/9	1/9	-1	1/3	0	0
0	0	0	1/3	0	1/9	1/9	1/9	0	0	1/3	0
1	1/6	1/6	0	1	1/9	1/9	1/9	1	0	0	1/3

(b) Find the probability of the events $A=\{X>0\}, B=\{X \geq Y\}$, and $C=$ $\{X=-Y\}$ for the above joint pmf's.

Question 123: [Basic] Problem 5.61.
5.61. For the three pairs of discrete random variables in Problem 5.11, find the correlation and covariance of X and Y, and indicate whether the random variables are independent, or-
thogonal, or uncorrelated.

Question 124: [Basic] Problem 5.65.
5.65. Find the correlation and covariance of X and Y in Problem 5.26. Determine whether X and Y are independent, orthogonal, or uncorrelated.
5.26. Let X and Y have joint pdf:

$$
f_{X, Y}(x, y)=k(x+y) \quad \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 .
$$

(a) Find k.
(b) Find the joint cdf of (X, Y).
(c) Find the marginal pdf of X and of Y.
(d) Find $P[X<Y], P\left[Y<X^{2}\right], P[X+Y>0.5]$.
5.71. The output of a channel $Y=X+N$, where the input X and the noise N are independent, zero-mean random variables.
(a) Find the correlation coefficient between the input X and the output Y.
(b) Suppose we estimate the input X by a linear function $g(Y)=a Y$. Find the value of a that minimizes the mean squared error $E\left[(X-a Y)^{2}\right]$.
(c) Express the resulting mean-square error in terms of σ_{X} / σ_{N}.

Question 126: [Basic] Problem 5.76(a).
5.76. (a) Find $p_{X}(x \mid y)$ for the communication channel in Problem 5.3.
(b) For each value of y, find the value of x that maximizes $p_{X}(x \mid y)$. State any assumptions about p and p_{e}.
(c) Find the probability of error if a receiver uses the decision rule from part b.
5.3. The input X to a communication channel is " -1 " or " 1 ", with respective probabilities $1 / 4$ and $3 / 4$. The output of the channel Y is equal to: the corresponding input X with probability $1-p-p_{e} ;-X$ with probability $p ; 0$ with probability p_{e}.
(a) Describe the underlying space S of this random experiment and show the mapping from S to $S_{X Y}$, the range of the pair (X, Y).
(b) Find the probabilities for all values of (X, Y).
(c) Find $P[X \neq Y], P[Y=0]$.

Question 127: [Intermediate/Exam Level] Problem 5.80(a,b,d). Also find $E(Y)$ and $E(h(X))$ where $h(x)=E(Y \mid X=x)$.

5.80. (a) Find $f_{Y}(y \mid x)$ in Problem 5.26.

(b) Find $P[Y>X \mid x]$.
(c) Find $P[Y>X]$ using part b.
(d) Find $E[Y \mid X=x]$.
5.26. Let X and Y have joint pdf:

$$
f_{X, Y}(x, y)=k(x+y) \quad \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 .
$$

(a) Find k.
(b) Find the joint cdf of (X, Y).
(c) Find the marginal pdf of X and of Y.
(d) Find $P[X<Y], P\left[Y<X^{2}\right], P[X+Y>0.5]$.

