ECE 302-003, Homework \#11

Due date: Saturday 12/02/2023, 11:59pm;
Submission via Gradescope
https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Question 110: [Intermediate/Exam Level]
Suppose X is a uniform random variable with parameters $a=1, b=2$. Given $X=x_{0}$, the conditional probability density function of Y, is an exponential random variable with $\lambda=x_{0}$.

1. Find the sample space of (X, Y).
2. What is the joint probability density function of X and Y ?
3. What is the probability that $P(X<1.5$ and $Y \leq 2)$?

Question 111: [Basic] Problem 5.31.

5.31. Let X and Y be the pair of random variables in Problem 5.17.
(a) Find the joint pdf of X and Y.
(b) Find the marginal pdf of X and of Y.
(c) Find $P\left[Y<X^{2}\right]$.
5.17. A point (X, Y) is selected at random inside a triangle defined by $\{(x, y): 0 \leq y \leq x \leq 1\}$.
Assume the point is equally likely to fall anywhere in the triangle.
(a) Find the joint cdf of X and Y.
(b) Find the marginal cdf of X and of Y.
(c) Find the probabilities of the following events in terms of the joint cdf: $A=\{X \leq 1 / 2, Y \leq 3 / 4\} ; B=\{1 / 4<X \leq 3 / 4,1 / 4<Y \leq 3 / 4\}$.

Question 112: [Basic] Problem 5.41.
5.41. Michael takes the $7: 30$ bus every morning. The arrival time of the bus at the stop is uniformly distributed in the interval [7:27, 7:37]. Michael's arrival time at the stop is also uniformly distributed in the interval [7:25,7:40]. Assume that Michael's and the bus's arrival times are independent random variables.
(a) What is the probability that Michael arrives more than 5 minutes before the bus?
(b) What is the probability that Michael misses the bus?

Question 113: [Basic] Problem 5.48(a,b,d).
5.48. Let X and Y be independent random variables that are uniformly distributed in $[-1,1]$. Find the probability of the following events:
(a) $P\left[X^{2}<1 / 2,|Y|<1 / 2\right]$.
(b) $P[4 X<1, Y<0]$.
(c) $P[X Y<1 / 2]$.
(d) $P[\max (X, Y)<1 / 3]$.

Question 114: [Intermediate/Exam Level] Problem 5.18.
5.18. A dart is equally likely to land at any point $\left(X_{1}, X_{2}\right)$ inside a circular target of unit radius. Let R and Θ be the radius and angle of the point $\left(X_{1}, X_{2}\right)$.
(a) Find the joint cdf of R and Θ.
(b) Find the marginal cdf of R and Θ.
(c) Use the joint cdf to find the probability that the point is in the first-quadrant of the
real plane and that the radius is greater than 0.5 .

Question 115: [Basic] Problem 5.20(b,c).
5.20. The pair (X, Y) has joint cdf given by:

$$
F_{X, Y}(x, y)= \begin{cases}\left(1-1 / x^{2}\right)\left(1-1 / y^{2}\right) & \text { for } x>1, y>1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Sketch the joint cdf.
(b) Find the marginal cdf of X and of Y.
(c) Find the probability of the following events: $\{X<3, Y \leq 5\},\{X>4, Y>3\}$.

Question 116: [Basic] Problem 5.17.
5.17. A point (X, Y) is selected at random inside a triangle defined by $\{(x, y): 0 \leq y \leq x \leq 1\}$. Assume the point is equally likely to fall anywhere in the triangle.
(a) Find the joint cdf of X and Y.
(b) Find the marginal cdf of X and of Y.
(c) Find the probabilities of the following events in terms of the joint cdf: $A=\{X \leq 1 / 2, Y \leq 3 / 4\} ; B=\{1 / 4<X \leq 3 / 4,1 / 4<Y \leq 3 / 4\}$.

Question 117: [Intermediate/Exam Level] Problem 5.35. tion with zero mean and variance $\sigma^{2}=0.25$.
(a) Find the joint probability $P[X=j, Y \leq y]$.
(b) Find the marginal pmf of X and the marginal pdf of Y.
(c) Suppose we are given that $Y>0$. Which is more likely, $X=1$ or $X=-1$?

