ECE 302-003, Homework \#1

Due date: Wednesday 8/30/2023, 11:59pm;
Submission via Gradescope
https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Review of Calculus:

Question 1: Compute the values of the following integrals, given the condition that $\lambda>0$.

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1}{x^{2}} d x \\
& \int_{0}^{\infty} \lambda e^{-\lambda x} d x
\end{aligned}
$$

Question 2: Compute the expressions of the following indefinite integrals.

$$
\begin{aligned}
& \int y e^{-\frac{y^{2}}{2 x^{2}}} d y \\
& \iint x e^{y z} d z d x
\end{aligned}
$$

Question 3: Compute the values of the following integrals. Hint: It can be solved by inspection.

$$
\begin{aligned}
& \int_{-10}^{10} y e^{-2|y|} d y \\
& \int_{-20}^{20} x^{3} e^{-\frac{x^{2}}{10}} d x
\end{aligned}
$$

Question 4: Compute the values of the following integrals. Hint: Use the integration by part formula.

$$
\begin{aligned}
& \int_{0}^{\infty} z 0.5 e^{-0.5 z} d z \\
& \int_{0}^{\infty} z^{2} 0.5 e^{-0.5 z} d z
\end{aligned}
$$

Question 5: Compute the bilateral Laplace transform of the following functions.

$$
\begin{gathered}
f(x)= \begin{cases}0.5 e^{-0.5 x} & \text { if } x \geq 0 \\
0 & \text { otherwise }\end{cases} \\
g(x)= \begin{cases}1 / 3 & \text { if } x \in[0,3] \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Hint: The bilateral Laplace transform of any function $f(x)$ is defined as

$$
L_{f}(s)=\int_{-\infty}^{\infty} e^{-s x} f(x) d x
$$

Question 6: Define a 2-D function $f(x, y)$ as follows.

$$
f(x, y)= \begin{cases}2 / 9 & \text { if } x \in[0,3] \text { and } y \in[0, x] \\ 0 & \text { otherwise }\end{cases}
$$

Sub-question 1: What are the values of $f(2,2.01)$ and $f(1,0.33)$.
Sub-question 2: Define another 2-dimensional function

$$
g(x, y)=\int_{t=-\infty}^{y} \int_{s=-\infty}^{x} f(s, t) d s d t
$$

Find the values of $g(1,2)$ and $g(2,2.01)$.

Question 7: Define a 1-D function $f(x)$ as follows.

$$
f(x)= \begin{cases}\frac{x}{4} & \text { if } x \in[0,1] \\ \frac{3}{8} & \text { if } x \in(1,3] \\ \frac{-x}{4}+1 & \text { if } x \in(3,4] \\ 0 & \text { otherwise }\end{cases}
$$

Sub-question 1: Plot $f(x)$ for the range of $-1<x<5$.
Sub-question 2: Compute the value of the following integral.

$$
\int_{x=-\infty}^{\infty} x f(x) d x .
$$

Question 8: Consider three series:

$$
\begin{gathered}
\sum_{k=27}^{\infty} 0.9^{k} \\
\sum_{k=0}^{\infty} k 0.5^{k+1} \\
\sum_{k=3}^{50} y^{k}
\end{gathered}
$$

Compute the values of the first two series, and find the expression of the third series. You may need to use the following formulas

$$
\begin{align*}
& \sum_{k=1}^{\infty} a r^{k-1}=\frac{a}{1-r} \quad \text { if }|r|<1 \tag{1}\\
& \sum_{k=1}^{\infty} a k r^{k-1}=\frac{a}{(1-r)^{2}} \quad \text { if }|r|<1 \tag{2}\\
& \sum_{k=1}^{K} a r^{k-1}=\frac{a\left(1-r^{K}\right)}{1-r} \quad \text { if } r \neq 1 \tag{3}
\end{align*}
$$

Question 9: Suppose a_{k} is a series such that

$$
a_{k}= \begin{cases}0.8 & \text { if } k=-1 \\ 0.2 & \text { if } k=9 \\ 0 & \text { otherwise }\end{cases}
$$

Compute the values of the following expressions:

$$
\begin{align*}
& \sum_{k=-\infty}^{\infty} a_{k} \tag{4}\\
& \sum_{k=-\infty}^{\infty} k a_{k} \tag{5}\\
& \sum_{k=-\infty}^{\infty} \min (k, 3) a_{k} \tag{6}\\
& \sum_{k=-\infty}^{\infty} \sin (k \pi) a_{k} \tag{7}
\end{align*}
$$

Note: The function " $\min (\cdot, \cdot)$ " returns the minimum of the two inputs. For example, $\min (1.11,5.375)=1.11$.

Question 10: [Basic] Throw a fair die and toss a fair coin together. Let X and Y denote the outcomes of the die and the coin respectively, where we use the convention that $Y=1$ if the outcome of the coin is head. $Y=0$ if the outcome of the coin is tail.

- What is the sample space in this experiment? (Note the definition of the sample space is the collection of all possible choices of uncertain outcomes.)
- What is the probability weight you would like to assign to each outcome of the sample space? Why do you make such a weight assignment?
- What is the probability that $X^{2}+Y$ is a prime number? (Note that 1 is NOT a prime number. The smallest prime number is 2.)

