Purdue

COURSENAME/SECTIONNUMBER EXAM TITLE

NAME _____

PUID ______

Tips for making sure GradeScope can read your exam:

- 1. Make sure your name and PUID are clearly written at the top of every page, including any additional blank pages you use.
- 2. Write only on the front of the exam pages.
- 3. Add any additional pages used to the back of the exam before turning it in.
- 4. Ensure that all pages are facing the same direction.
- 5. Answer all questions in the area designated for that answer. Do not run over into the next question space.

Final of ECE302, Section 3

1–3pm, Friday, December 15, 2023, FRNY G140.

- 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and signature in the space provided on this page, **NOW!**
- 2. This is a closed book exam.
- 3. This exam may contain some multiple choice questions and work-out questions. For multiple choice questions, there is no need to justify your answers. You have two hours to complete it. The students are suggested not spending too much time on a single question, and working on those that you know how to solve.
- 4. Please do not write on the back of each page. Any work on the back of the pages will not be scanned and thus will not be graded.
- 5. Neither calculators nor help sheets are allowed.

Name:

Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together — We are Purdue.

Signature: Solution

Date: 12/15/2023

Last Name:

First Name:

Purdue ID:

Question 1: [12%, Work-out question] Consider two random variables (X, Y). The corresponding 2-dimensional CDF is described as follows.

$$F_{X,Y}(x,y) = \begin{cases} 1 - \frac{1}{x} - \frac{2}{y} + \frac{2}{xy} & \text{if } 2 \le x \text{ and } 3 \le y \\ 0 & \text{otherwise} \end{cases}$$

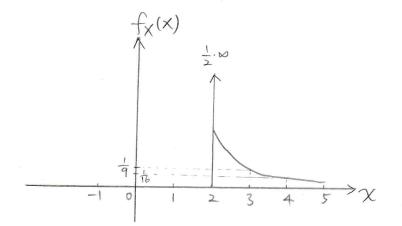
- 1. [2%] Find the expression of the marginal cdf $F_X(x)$.
- 2. [6%] Find the expression of the marginal pdf $f_X(x)$ and plot it for the range of -1 < x < 5.

Hint: If you do not know how to solve this sub-question, you can instead plot the CDF of a binomial random variable W with parameter n = 2 and p = 0.1 for the range of -2.5 < w < 5.2. You will receive 4 points if your answer is correct.

3. [4%] Find the probability of $P(2 \le X, \text{ and } Y \le 4)$. Your answer should be something like $\frac{e^{-3}}{4} - \frac{e^{-8}}{\pi} + 0.2$

$$F_{X}(X) = F_{X,Y}(X, M) = \begin{cases} 1 - \frac{1}{X} & \text{if } X \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

 $2 f_{X}(x) = \frac{d}{dx}F_{X}(x) = \frac{1}{2}\delta(x-2) + \frac{1}{x^{2}}u(x-2)$

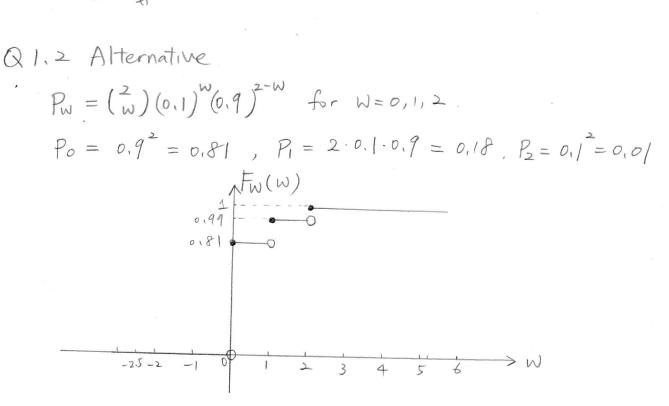


Last Name: First Name: This sheet is for Question 1.

Purdue ID:

0

3. $P(2 \le X \text{ and } Y \le 4)$ = $F(M, 4) - F(2^{-}, 4)$ = $(1 - \frac{2}{4}) - 0$ = $\frac{1}{2}$ #



First Name:	Purdue ID:
-------------	------------

Question 2: [9%, Work-out question] Consider two random variables X and Y. We know that Y is uniform distribution within the interval (1, 4.5) and given $Y = y_0$, X is an exponential random variable with $\lambda = \frac{1}{y_0+1}$.

1. [9%] Find the (1,1)-th moment of (X, Y).

Last Name:

Hint 1: If you do not know what is the "(1,1)-th moment", you can solve the expectation $E(XY^2)$ instead. You will receive 7.5 points if your answer is correct.

Hint 2: The table may be useful when solving this question.

$$f_{Y}(y) = \begin{cases} \frac{1}{45-1} = \frac{1}{3.5} = \frac{2}{7} & \text{if } 1 < y < 4.5 \\ 0 & \text{otherwise} \end{cases}$$

$$f_{X|Y}(x|y) = \frac{1}{y+1} e^{-\frac{1}{y+1}x} & \text{for } x \ge 0$$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \cdot \frac{1}{7} (\frac{1}{y+1}) f_{X|Y}(x|y) dx dy$$

$$= \int_{1}^{4.5} \int_{0}^{\infty} xy \cdot \frac{1}{7} \frac{1}{y+1} e^{-\frac{1}{y+1}x} dx dy$$

$$= \int_{1}^{4.5} \frac{2}{7}y \int_{0}^{\infty} x \frac{1}{y+1} e^{-\frac{1}{y+1}x} dx dy$$

$$= \int_{1}^{\frac{9}{2}} \frac{2}{7}y (\frac{1}{y+1}) dy = \frac{2}{7} \int_{1}^{\frac{9}{2}} y^{2} + y dy$$

$$= \frac{2}{7} \left[\frac{1}{3}y^{3} + \frac{1}{2}y^{2} \right]_{1}^{\frac{9}{2}}$$

$$= \frac{2}{7} \frac{1}{24} \frac{1}{24} + \frac{1}{2} \cdot \frac{81}{7} - \frac{1}{3} - \frac{1}{2} \right)$$

$$= \frac{2}{7} \frac{1}{24} + \frac{2}{3} - \frac{2}{4} = \frac{24}{3} = \frac{24}{3}$$

Last Name: This sheet is for Question 2. First Name:

Purdue ID:

Alternative:

$$E(XY^{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy^{2} \cdot f_{Y}(y) f_{X|Y}(x|y) dx dy$$

$$= \int_{1}^{4,5} \int_{0}^{\infty} xy^{2} \cdot \frac{1}{2} \frac{1}{y+1} e^{-\frac{1}{y+1}x} dx dy$$

$$= \int_{1}^{4,5} \frac{1}{2}y^{2} \int_{0}^{\infty} x \frac{1}{y+1} e^{-\frac{1}{y+1}x} dx dy$$

$$= \int_{1}^{\frac{q}{2}} \frac{1}{2}y^{2} (y+1) dy$$

$$= \frac{1}{2} \int_{1}^{\frac{q}{2}} y^{3} + y^{2} dy$$

$$= \frac{1}{2} \left[\frac{1}{4}y^{4} + \frac{1}{3}y^{3} \right]_{1}^{\frac{q}{2}}$$

$$= \frac{1}{2} \left[\frac{6561}{64} + \frac{129}{24} - \frac{1}{4} - \frac{1}{3} \right]$$

$$= \frac{1}{2} \frac{19683 + 5832 - 48 - 64}{3 \cdot 2^{6}} = \frac{15403}{7 \cdot 3 \cdot 2^{5}}$$

$$= \frac{3629}{96}$$

Last Name:	First Name:	Purdue ID:
This sheet is for Question 2.		
	·	

,

Last Name:

First Name:

Purdue ID:

Question 3: [12%, Work-out question] Consider two random variables X and Y with the joint pdf being

$$f_{XY}(x,y) = \begin{cases} \frac{1}{3}(x+y) & \text{if } 1 \le x < 2 \text{ and } 1 \le y < 2\\ 0 & \text{otherwise} \end{cases}$$
(1)

1. [12%] Compute the correlation coefficient ρ between X and Y.

Hint 1: If you do not know the answer to this question, you can compute E(X) and Var(X). You will receive 9 points if your answers are correct.

Hint 2: You can leave your answers in the following form $\frac{(35/27)^4 - (21/55)^7 + \pi^5}{(25/7)^4 - (42/23)^7}$. There is no need to further simplify it.

Hint 3: There is no "trick" in solving this question. You just have to be patient and carry out the computation. Please remember you don't need to write down the simplest answer. A form as in Hint 2 would be sufficient.

$$\begin{aligned} C_{XY} &= \frac{C_{ov}(X,Y)}{\sigma_{X}\sigma_{Y}} = \frac{C_{ov}(X,Y)}{\sqrt{Var(X)Var(Y)}} \\ f_{X}(x) &= \int_{1}^{2} \frac{1}{3} (x+y) dy = \frac{1}{3} [xy + \frac{1}{2}y^{2}]_{1}^{2} \\ &= \frac{1}{3} [(2x+2) - (x + \frac{1}{2})] = \frac{1}{3} [x + \frac{3}{2}] \\ &= \frac{1}{3} x + \frac{1}{2} \quad \text{if } 1 \le x < 2 \end{aligned}$$

Similarly,

 $= \frac{55}{36}$ = E(Y)

$$f_{Y}(y) = \int_{1}^{\infty} \frac{1}{3} (x+y) dx = \frac{1}{3} y + \frac{1}{2} \quad \text{if } 1 \le y < 2$$

$$E(x) = \int_{-\infty}^{\infty} x f_{x}(x) dx = \int_{1}^{2} x (\frac{1}{3} x + \frac{1}{2}) dx = \int_{1}^{2} \frac{1}{3} x^{2} + \frac{1}{2} x dx$$

$$= \left[\frac{1}{9} x^{3} + \frac{1}{4} x^{2} \right]_{1}^{2} = \left(\frac{9}{9} + 1 \right) - \left(\frac{1}{9} + \frac{1}{4} \right)$$

Last Name: This sheet is for Question 3. First Name:

Purdue ID:

 $E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx = \int_{-\infty}^{\infty} x^{2} (\frac{1}{2}x + \frac{1}{2}) dx = \int_{-\infty}^{\infty} \frac{1}{2}x^{3} + \frac{1}{2}x^{2} dx$ $= \left[\frac{1}{12} \chi^{4} + \frac{1}{6} \chi^{3} \right]^{2} = \left(\frac{4}{3} + \frac{4}{3} \right) - \left(\frac{1}{12} + \frac{1}{6} \right)$ $=\frac{29}{12}$ $= F(\Upsilon^{\perp})$ $Var(X) = E(X^{2}) - (E(X))^{2} = \frac{29}{12} - (\frac{55}{36})^{2} = Var(Y)$ Also, Cov(X,Y) = E(XY) - E(X)E(Y) $E(XY) = \int_{\infty}^{\infty} \int_{\infty}^{\infty} xy f_{xy}(x,y) dx dy = \int_{\infty}^{2} \int_{0}^{2} xy \frac{1}{3}(x+y) dx dy$ $= \frac{1}{3} \int_{-\infty}^{2} f^{2} x^{2} y + xy^{2} dx dy$ $= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \chi^{3} y + \frac{1}{2} \chi^{2} y^{2} \right]_{y-1}^{2} dy \right]$ $= \frac{1}{3} \left(\frac{8}{3} y + 2y^{2} \right) - \left(\frac{1}{3} y + \frac{1}{2} y^{2} \right) dy$ $= \frac{1}{3} \left[\frac{2}{3} \frac{3}{3} + \frac{3}{2} \frac{y^2}{2} dy = \frac{1}{3} \left[\frac{2}{6} \frac{y^2}{2} + \frac{1}{2} \frac{y^3}{3} \right]_{y=1}^{y=1}$ $= \frac{1}{2} \left[\left(\frac{14}{5} + 4 \right) - \left(\frac{7}{6} + \frac{1}{2} \right) \right] = \frac{7}{2}$ $\therefore f_{XY} = \frac{E(XY) - E(X)E(Y)}{\sqrt{Var(X)Var(Y)}} = \frac{\frac{1}{3} - (\frac{55}{36})^2}{\frac{29}{12} - (\frac{55}{36})^2}$

Last Name:First Name:Purdue ID:This sheet is for Question 3.

,

Last	Name:

First Name:

Purdue ID:

Question 4: [12%, Work-out question] Consider a pair of joint Gaussian random variables (X, Y) with $m_X = 1$, $m_Y = 0$, $\sigma_X^2 = 1$, $\sigma_Y^2 = 4$, and $\rho = \frac{3}{8}$.

1. [8%] We use (X, Y) to construct another random variable W = 3X - 2Y. Please write down the pdf $f_W(w)$ of the new random variable W.

Hint 1: If you do not know how to solve Q4.1, please find the mean and variance of W, you will receive 6 points if your answer is correct.

2. [4%] Suppose there is a standard Gaussian random variable V that is independent of W. Find the probability P(W + 3V > 5).

Hint 2: The following values may be useful.

$$Q(0) = 0.5$$
 (2)

$$Q(0.4) = 0.3446\tag{3}$$

 $Q(0.8) = 0.2119\tag{4}$

$$Q(1.2) = 0.1151\tag{5}$$

 $Q(1.6) = 0.0548 \tag{6}$

$$Q(2) = 0.0228 \tag{7}$$

Hint 3: If you do not know how to solve Q4.2, please find the probability P(X < -1). You will receive 3 points if your answer is correct.

$$f' = M_{W} = E(W) = E(3X-2Y) = 3M_{X} - 2M_{Y} = 3$$

$$E(W^{2}) = E((3X-2Y)^{2}) = E(9X^{2} - 12XY + 4Y^{2})$$

$$= 9E(X^{2}) - 12E(XY) + 4E(Y^{2})$$

$$= 9(\sigma_{X}^{2} + m_{X}^{2}) - 12(9\sigma_{X}\sigma_{Y} + m_{X}m_{Y}) + 4(\sigma_{Y}^{2} + m_{Y}^{2})$$

$$= 9(1+1) - 12(\frac{3}{8} \cdot 1 \cdot 2 + 1 \cdot 0) + 4(4+0)$$

$$= 18 - 9 + 16 = 25$$

$$\sigma_{W}^{2} = Var(W) = E(W^{2}) - (E(W))^{2} = 25 - 3^{2} = 16$$

Last Name:First Name:Purdue ID:This sheet is for Question 4.

Since
$$(X, Y)$$
 are joint Gaussian, W is also Gaussian.

$$f_W(w) = \frac{1}{\sqrt{2\pi \cdot 16}} e^{-\frac{(W-3)^2}{2 \cdot 16}} f_{or} - w < w < w < \#$$

2. Since V is a Gaussian and is independent of W,
W+3V is also Gaussian with

$$E(W+3V) = E(W) + 3E(V) = 3$$

 $Var(W+3V) = Var(W) + 9Var(V) = 16 + 9 = 25$
Let Z be a standard Gaussian $Z \sim N(0,1)$
 $W+3V = 5Z + 3$
 $P(W+3V>5) = P(5Z+3>5) = P(5Z>2)$
 $= P(Z > 0.4)$

$$= Q(0,4) = 0,3446 \#$$

Alternative:

$$X \sim N(1,1) \quad X = Z + 1$$

$$P(X < -1) = P(Z + 1 < -1) = P(Z < -2) = P(Z > 2)$$

$$= Q(2) = 0.0228$$

Last Name:	First Name:	Purdue ID:
This sheet is for Question 4.		

т	17	NT	
	oct	Name:	
	aou	LIAINC.	

First Name:

Purdue ID:

Question 5: [12%, Work-out question] Consider two continuous random variables (X, Y). We know that X is an exponential random variable with $\lambda_x = 1$ and Y is an exponential random variable with $\lambda_Y = 2$. We also know X and Y are independent.

1. [12%] Define W = X + Y, find the cdf $F_W(w)$ of W.

Hint: If you do not know the answer to this question, you can find $P(\max(X, Y) < 3)$. You will receive 9 points if your answer is correct.

$$f_{X}(x) = e^{-x} \text{ for } x \ge 0$$

$$f_{Y}(y) = 2e^{-2y} \text{ for } y \ge 0$$

$$\therefore \text{ X and } Y \text{ are independent}$$

$$\therefore f_{XY}(x,y) = f_{X}(x)f_{Y}(y)$$

$$F_{W}(w) = P(X+Y \le w)$$

$$i^{\circ} \text{ If } w < 0, \quad F_{W}(w) = 0$$

$$2^{\circ} \text{ If } w \ge 0, \quad F_{W}(w) = P(X+Y \le w) = \int_{0}^{w} \int_{0}^{w-y} f_{XY}(x,y)dxdy$$

$$= \int_{0}^{w} \int_{0}^{w-y} e^{-x} \cdot 2e^{-2y}dxdy$$

$$= \int_{0}^{w} 2e^{-2y}[-e^{-x}]_{0}^{w-y}dy$$

$$= \int_{0}^{w} 2e^{-2y}(1-e^{-(w-y)})dy$$

$$= \int_{0}^{w} 2e^{-2y} - 2e^{-2y-w+y}dy$$

$$= \int_{0}^{w} 2e^{-2y}dy - 2e^{-2y-w+y}dy$$

Last Name: This sheet is for Question 5.

 $F_{W}(w) = [-e^{-2y}]_{0}^{w} - 2e^{-w}[-e^{-y}]_{0}^{w}$ $= (1 - e^{-2w}) - 2e^{-w}(1 - e^{-w})$ $= 1 - 2e^{-w} + e^{-2w}$

First Name:

$$F_{W}(w) = \begin{cases} 0 & \text{if } w < 0 \\ 1 - 2e^{-w} + e^{-2w} & \text{if } w \ge 0 \end{cases}$$

Alternative:

$$P(\max(X,Y) < 3) = P(X < 3)P(Y < 3)$$

$$= \int_{0}^{3} f_{X}(x) dx \int_{0}^{3} f_{Y}(y) dy$$

$$= \int_{0}^{3} e^{-X} dx \int_{0}^{3} 2e^{-2y} dy$$

$$= [-e^{-X}]_{0}^{3} [-e^{-2y}]_{0}^{3}$$

$$= (1 - e^{-3})(1 - e^{-6}) + 1$$

Purdue ID:

Last Name: This sheet is for Question 5.

.

First Name:

Purdue ID:

Last Name: First Name:	Purdue ID:
------------------------	------------

Question 6: [12%, Work-out question] Consider two discrete random variables (X, Y). We know that X is binomial with (n, p) = (3, 0.99). Given $X = x_0$, Y is binomial with parameters $(n, p) = (x_0, 0.6)$.

- 1. [3%] What does the acronym "MAP" detector stand for?
- 2. [4%] If we observe Y = 1, what is the value of the ML detector?
- 3. [5%] If we observe Y = 1, what is the value of the MAP detector?

1. Maximum A posteriori Probability
2.
$$P_X(x) = \begin{pmatrix} 3 \\ x \end{pmatrix} 0.99^{\chi} 0.0 \\ 0.$$

Last Name:First Name:Purdue ID:This sheet is for Question 6.

3.
$$MAP(Y=1) = \arg \max R_{XY}(x|y=1)$$

 $R_{YY}(x|y=1) = \frac{R_{Y}(x,1)}{P_{Y}(1)} = \frac{P_{X}(x)P_{Y|X}(y=1|x)}{R_{Y}(1)}$
 $\Rightarrow MAP(Y=1) = \arg \max R_{XY}(x|y=1)$
 $= \arg \max R_{X}(x)P_{Y|X}(y=1|x)$
 $R_{X}(0)P_{Y|X}(1|0) = R_{X}(0) \cdot 0 = 0$
 $< R_{X}(1)P_{Y|X}(1|1) = 3 \cdot 0.99^{-1} \cdot 0.01^{-1} \cdot 0.66$
 $< R_{X}(2)P_{Y|X}(1|3) = 1 \cdot 0.99^{-3} \cdot 0.289$

Thus, MAP(Y=1) = 3#

Last Name:First Name:This sheet is for Question 6.

Purdue ID:

Last Name: First Name:	Purdue ID:
------------------------	------------

Question 7: [13%, Work-out question] Prof. Wang's car is in the shop recently, and he has to take a bus to school. He arrives at the bus stop at noon, 12:00pm, and the bus just left. We denote the arrival time of the next bus as X with the unit being minutes. For example, X = 15 means that the next bus arrives at 12:15:00 and X = 3.25 means that the next bus arrives at 12:03:15. Herein we use the format hh:mm:ss.

From historical data, Prof. Wang knows that X has the following pdf:

$$f_X(x) = \begin{cases} 0.5 \cdot 2e^{-2x} + 0.5 \cdot \frac{1}{10} & \text{if } 10 < x < 20\\ 0.5 \cdot 2e^{-2x} & \text{if } 0 < x \le 10 \text{ or if } 20 \le x \end{cases}$$
(8)

Since Prof. Wang has missed the bus, he uses the time to solve the following probability questions.

1. [6%] What is the expected value of the "waiting time (unit: minutes)" before the next bus arrives?

Hint: Using the formula table can save you some time so that you don't need to do integration by part.

2. [7%] Suppose Prof. Wang waits at the bus stop for 25 minutes and no bus has come yet. Find out the probability that Prof. Wang has to wait for at least *another* 5 minutes?

Hint: Please first write down the "probability" in a mathematical form. For example, something like $P(X^2 < 5|X \text{ being a prime})$.

$$E(X) = \int_{0}^{10} \chi f_{X}(x) d\chi = \int_{0}^{10} \chi \frac{1}{2} \cdot 2e^{2X} d\chi + \int_{10}^{10} \chi \cdot (\frac{1}{2} \cdot 2e^{2X} + \frac{1}{20}) d\chi + \int_{20}^{10} \chi \cdot \frac{1}{2} \cdot 2e^{2X} d\chi + \int_{10}^{10} \frac{1}{20} \chi d\chi$$

$$= \frac{1}{2} \int_{0}^{10} \chi \cdot 2e^{2X} d\chi + \int_{10}^{10} \frac{1}{20} \chi d\chi$$

$$= \frac{1}{2} \cdot \frac{1}{2} + \left[\frac{1}{40} \chi^{2}\right]_{X=10}^{20}$$

$$= \frac{1}{4} + \frac{20 \cdot 20}{40} - \frac{10 \cdot 10}{40} = \frac{1}{4} + 10 - \frac{10}{4}$$

$$= \frac{31}{4} + \frac{1}{40}$$

Last Name:	First Name:	Purdue ID:
This sheet is for Question 7.		

Goal Find
$$P(X > 25+5 | X > 25)$$

 $P(X > 30) = \int_{30}^{\infty} \frac{1}{2} \cdot 2e^{-2X} dx = \frac{1}{2} \left[-e^{-2X} \right]_{X=30}^{\infty}$
 $= \frac{1}{2} e^{-60}$
 $P(X > 25) = \int_{25}^{\infty} \frac{1}{2} \cdot 2e^{-2X} dx = \frac{1}{2} e^{-50}$
 $\therefore P(X > 30 | X > 25) = \frac{P(X > 30 \text{ and } X > 25)}{P(X > 25)} = \frac{P(X > 30)}{P(X > 25)}$
 $= \frac{\frac{1}{2} e^{-60}}{\frac{1}{2} e^{-50}} = e^{-10}$

Last Name: First Name: This sheet is for Question 7.

Purdue ID:

	Last	Name:	First Name:	Purdue ID:
		-	estion. There is no need to justif ag statements are true or false.	fy your answers]
True		(-4, 0), (2, 2) and (2, -2)	nly distributed over a triangle w . (For example, (X, Y) can be (random variables X and Y are c	(0.9, 0.77) or $(-1.9, -0.5)$,
False			om variables X, Y , and Z . Support representation of the set o	
False	3.		ussian random variable, Y is a state of a Gaussian random variable wit	
rue		trary discrete random va	andom variable X with parame riable Y . Regardless of whethe correlated, or uncorrelated, we	er X and Y are positively
True	• 5.		rmly randomly distributed over andom variables $X = \cos(\Theta)$ arisely correlated.	
True	6.		sign the weight assignment of a i) $E(X) = 10$ and (ii) $F_X(10)$	
False	7.	variance of Y given $X =$ given $X = 1$. Also define	m variable with $p = 0.5$. Define V x. For example, $Var(Y, 1)$ is the Var(Y) as the variance of the Var(Y) = 0.5(Var(Y 0) + Var(Y 0))	conditional variance of Y (marginal) distribution of
True	8.	[2%] For any random var	iable X, we always have $P(e^{-0.1})$	$X \ge \sqrt{2} \le \frac{E(e^{-0.1X})}{\sqrt{2}}.$
Fals			nstruct a pair of joint Gaussian = 1, $\sigma_X^2 = 4$, $\sigma_Y^2 = 9$ and $Cov(X)$	

F

Last Name: This sheet is for Question 8.

1

First Name:

Purdue ID:

 $I = \int_{-2}^{Y} (2,2) = \int_{-2}^{2} \int_{-2}^{1} \frac{1}{2} (2,2) = \int_{-2}^{2} \int_{-2}^{1} \frac{1}{2} \frac$

2 Counterexample:

$$P_{XYZ}(x_1y_1y_2) = \begin{cases} 0.09 & \text{if } (x_1y_1y_2) = (-1, -1, -1) \\ 0.01 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.00 \\$$

6. For X with
$$P(X=10) = 1$$
, $E(X) = 10$ and $F_X(10) = P(X \le 10) = 1$.
7. From Lecture Note $P. 172$, $Var(Y) \neq E(Var(Y|X))$ in general.
8. $\therefore e^{-0.1X}$ is a non-negative random variable
 $\therefore P(e^{-0.1X} \ge \sqrt{2}) \le \frac{E(e^{-0.1X})}{\sqrt{2}}$ holds by Markov inequality.

9
$$P_{XY} = \frac{C_{0Y}(X,Y)}{\sigma_X \sigma_Y} = \frac{40}{2\cdot 3} = \frac{20}{3} > 1$$