
ECE 302-003, Project #1
Due date: Friday 11/3/2023, 11:59pm;

https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

Project: Synthesize a grayscale picture from multiple binary
pictures generated by single-photon detectors.

Authors: The current version of this project is based on latest the revision of Pin-Wen
Su and Prof. Chih-Chun Wang in fall 2023. This project was originally designed and
created by Prof. Stanley Chan and Kent Gauen.

• A short introduction about why we are interested in this project:
This project studies a single-photon image sensor. The goal is to demonstrate that by

repeatedly using a single-photon sensor (over time), one can recreate the original image as
if we are using a traditional CMOS sensor. Some background information: single-photon
sensors, as the name indicated, are designed for extremely low light environments. You
can Google the term for more information.

• The following process will be performed on each pixel separately:
Specifically, the goal is to capture the image of an object as a 1000x750 grayscale

image file (i.e., totally we have 750K pixels). The following describes the light-capturing
process for each pixel and the process needs to be repeated for all 750K pixels.

Suppose for a given pixel, the average photon arrival rate is α during each measurement
period. Obviously, the brighter the subject, the larger the average photon arrival rate α.
The challenge is that the sensor (of each pixel) does not know the average arrival rate
α, and can only count how many photons it has actually received in each measurement
period, which is a random variable.

First, recall that photons arrive according to a Poisson distribution, i.e., the probability
of receiving k photons is

P (Y = k) =
αke−α

k!
,

where α is the (unknown) underlying photon arrival rate. Because the hardware is a
“single-photon” detector, when photons arrive at the sensor/detector, the detector gen-
erates a binary response “1” when one or more photons are detected, and “0” when no
photon is detected.

• Basic analysis: Please write down your answers for the following questions (a)–(e)
when submitting the results of your project.

1

https://engineering.purdue.edu/~chihw/23ECE302F/23ECE302F.html

(a) Let B be the random variable denoting the response of the single-photon detector.
That is,

B =

{
1, Y ≥ 1,

0, Y = 0,

where Y is the number of photons received. Find the pmf of B. Obviously, your
answer would be a function of the unknown average arrival rate α.

P (B = 0) = P (Y = 0) = e−α

P (B = 1) = P (Y ≥ 1) = 1− P (Y = 0) = 1− e−α

(b) Suppose we have repeated the measurement for T times. That is, it is similar to
taking a “burst” of T pictures of a single pixel. (It is worth emphasizing again that
all our discussion is only for one pixel. The same process needs to be applied to
each individual pixel separately.)

We also assume that the T measurements are independent and we denote the T
measurement results by B1, B2, to BT , respectively, where each Bt is either 0 or
1. It is convenient to further group the T measurements as a T -dimensional vector
B⃗ = (B1, · · · , BT)

For example, if T = 4 and B⃗ = (1, 0, 1, 1), it means that for this particular pixel, we
take T = 4 independent measurements. In the second measurement, the sensor did
not receive any photon at all. But for the first, third, and fourth measurements, the
sensor received at least one photon. Note that the sensor could have received > 1
photons. Nonetheless, because of the hardware limitation, it can only tell whether
no photon has arrived or whether there are ≥ 1 photons.

What is the probability P (B⃗ = (1, 0, 1, 1))? Your answer should be a function of α
since we do not know the α value.

P (B⃗ = (1, 0, 1, 1)) = (e−α)(1− e−α)3

(c) Do you know how to find the probability P (B⃗ = (1, 0, 1, 0, 0, 0, 1, 0)) in terms of

the α value? Do you know how to find the probability P (B⃗ = (0, 0, 1, 1, 0, 1, 1, 1))
in terms of the α value? Please repeat this questions several times for different
8-dimensional vector values until you are fully confident how to find the P (B⃗ = b⃗)

for any arbitrarily given 8-dimensional vector b⃗.

P (B⃗ = (1, 0, 1, 0, 0, 0, 1, 0)) = (e−α)5(1− e−α)3

P (B⃗ = (0, 0, 1, 1, 0, 1, 1, 1)) = (e−α)3(1− e−α)5

P (B⃗ = b⃗) =
8∏

t=1

(e−α)1−bt(1− e−α)bt

2

(d) For arbitrary T and arbitrary vector b⃗, find the closed-form expression of the prob-

ability P (B⃗ = b⃗). Make sure you know how to answer this question for arbitrarily

given α, T , and b⃗ values. You should not proceed unless you know how to solve this
question.

P (B⃗ = b⃗) =
T∏
t=1

(e−α)1−bt(1− e−α)bt

(e) Suppose we receive B⃗ = b⃗ for some T -dimensional b⃗ vector. Recall that your answer

of the previous question depends on the α value, i.e., P (B⃗ = b⃗) = f(α) for some

function f(α). If I received a T -dimensional vector B⃗ = b⃗, then the “most likely α”
should be the α value that maximizes the f(α) value.

Question: Prove that the following choice of α∗ will maximize the f(α) value found
in question (d).

α∗ = − log

(
1−

∑T
t=1 bt
T

)
. (1)

Hint: you can use basic calculus to find the α∗ value that maximizes f(α).

Since

P (B⃗ = b⃗) =
T∏
t=1

(e−α)1−bt(1− e−α)bt ,

taking natural logarithm on both sides will give us

logP (B⃗ = b⃗) = (T −
T∑
t=1

bt) log(e
−α) + (

T∑
t=1

bt) log(1− e−α).

To find the α that maximizes the value of logP (B⃗ = b⃗) (so as maximizes the value

of P (B⃗ = b⃗)), take the first derivative and set it to zero which gives us

α∗ = − log

(
1− 1

T

T∑
t=1

bt

)
.

3

• The actual MATLAB/Python project: Please complete the following Deliver-
ables #1 to #9 when submitting the results of your project.

The previous sub-questions have paved the mathematical foundation of how to com-
plete the following project. Here are the detailed steps of this project and the correspond-
ing deliverables.

1. Download an arbitrary image from the Internet. Depending on the memory size
of your PC, you may want to start with a small picture, say 1000 by 750, or some
comparably-sized ones.

Deliverable #1: Please print/display the image you have downloaded from the
Internet.

2. Please use the downloaded image and turn it into a grayscale image, which can
be achieved by the reference Python program Lines 8 – 12 given in the end of this
project description.

Deliverable #2: Please save the output of the grayscale image. Print (copy/paste)
that grayscale image as your answer for this question.

4

3. Please turn the grayscale image into a grayscale array with values between 0.0 and
6.0, which can be achieved by the reference Python program Lines 14 – 21.

Also in the given code, Line 24 of that program uses the grayscale array as the α
values of the Poisson distributions (each entry of the array is the α value for one
pixel). Line 24 then uses the computer to “simulate” the Poisson distributions and
generates the actual number of photon arrivals for each pixel.

Please write down a short code of yourself to convert the number of arrivals for each
pixel to a binary image based on the above idea of single-photon detectors. And
save the binary image into a file. (Please refer to Lines 26 – 36 of the Python code
below.)

Repeat the above process for T = 3 times. Namely, generate 3 arrays of photon
arrivals and their corresponding binary images by Lines 24 – 36.

Deliverable #3: Print (copy/paste) all three binary images you have created thus
far.

5

Deliverable #4: Answer the following question: Are the three binary images
pixel-by-pixel identical? It is a yes/no question. Please also add a few sentences
justifying your answer.

No, the three binary images are not pixel-by-pixel identical. Because, for each
pixel, the number of photon arrivals are randomly generated by Poisson distribu-
tion. It is possible that there are some photon arrivals in one measurement but no
photon arrives in another measurement, which results in different binary values of
that pixel in the binary images.

4. Repeat the above process for T = 50 and you will thus have 50 binary images. The
main task at hand is how we can use the 50 binary images to synthesize
the original picture. We will provide two different methods: One is a heuristic
one and one is a probability-based one. You should compare the performance of
these two competing methods by yourself.

5. Method #1: Because we have T = 50 binary images, we can take the pixel-by-
pixel average of these T = 50 binary images directly. Namely, for each pixel, we
compute the average of T = 50 pixels (one from each binary image) by

avg.b =

∑T
t=1 bt
T

(2)

Note that each average avg.b is in the range of [0, 1] because the value of each bt is
either 0 or 1. Since each pixel of a grayscale image has a range [0,255], we set the
actual pixel value to be

pixel.value = avg.b · 255 (3)

so that the pixel.value is now distributed1 between 0 to 255. Repeat this averaging
process for all pixels. (Please refer to Lines 39 – 50 of the Python code below.)

Deliverable #5: Display (copy/paste) the result of yours generated by this simple
average-based method.

1In fact, because each pixel value is usually an integer. A more precise formula is pixel.value =
⌊avg.b · 255⌋ where ⌊·⌋ is the floor function.

6

6. Method #2: We apply the following process to each pixel separately. Specifically,
we use the method previously discussed in Eq. (1) to reconstruct the best α∗ value
for each pixel.

Please write down a short code to find the best α∗ value for each pixel using the
formula in Eq. (1). Then Lines 56 – 66 convert the α∗ values back to a grayscale
image.

Deliverable #6: Display (copy/paste) the result of yours when using this probability-
based method.

7. Repeat the steps of Deliverables #5 and #6 except that this time we choose T =
1000. Namely, we like to combine 1000 binary images (instead of 50 binary images)
this time.

Deliverable #7: Please display (copy/paste) your grayscale image generated by
Method #1 with T = 1000.

7

Deliverable #8: Please display (copy/paste) your grayscale image generated by
Method #2 with T = 1000.

Deliverable #9: Please attach your complete program code for this experiment
of T = 1000.

1 import numpy as np
2 import numpy . random as npr
3 from PIL import Image
4
5 kappa = 6 .0
6 T = 1000 # the number o f measurements
7
8 # Load the image and conver t to g r ay s ca l e
9 img = Image .open(’ o r i g i n a l . jpg ’) . convert (’L ’)
10
11 # Save the o r i g i n a l image in g ray s ca l e

8

12 img . save (’ o r i g i n a l g r a y s c a l e . jpg ’)
13
14 # Convert image to numpy array
15 img = np . asar ray (img)
16
17 # Convert to f l o a t { 0 . 0 , 1 . 0 , 2 . 0 , . . . , 2 5 5 . 0 }
18 img = img . astype (np . f l o a t 3 2)
19
20 # Convert to va l u e s between 0 and kappa
21 img /= (255 .0/ kappa)
22
23 # Generate T photon image from the o r i g i n a l us ing po i sson d i s t r .
24 pho t on a r r i v a l s = npr . po i s son (img , (T, img . shape [0] , img . shape [1]))
25
26 # Please conver t to b inary images : B=0 i f Y=0 and B=1 i f Y>0
27 measurements = np . where (pho t on a r r i v a l s > 0 , 1 , 0)
28
29 # Convert to range 0−255
30 binaryimg = measurements ∗ 255 .0
31
32 # Convert to u in t8
33 binaryimg = binaryimg . astype (np . u int8)
34
35 # Save the b inary images
36 for i in range (3) :
37 Image . fromarray (binaryimg [i]) . save (’ b inary image ’+str (i +1)+’ . jpg ’)
38
39
40 # Method 1
41 # Please compute the mean o f the T binary images
42 avgb = np .mean(measurements , ax i s=0)
43
44 # Convert to range 0−255
45 p ixe l v1 = avgb ∗ 255 .0
46
47 # Convert to u in t8
48 p ixe l v1 = p ixe l v1 . astype (np . u int8)
49
50 # Save the r e cons t ruc t ed image by Method 1
51 Image . fromarray (p ix e l v1) . save (’method1 . jpg ’)
52
53 # Method 2
54 # Please use Eq . (1) to e s t imate a lpha ∗
55 e s t a l pha = −np . l og (1−avgb)
56
57 # Convert to range 0−255
58 e s t a l pha ∗= (255 .0/ kappa)
59
60 # Clip the p i x e l va lue w i th in the range 0−255
61 e s t a l pha = np . c l i p (e s t a lpha , 0 , 255)
62
63 # Convert to u in t8

9

64 e s t a l pha = e s t a l pha . astype (np . u int8)
65
66 # Save the r e cons t ruc t ed image by Method 2
67 Image . fromarray (e s t a l pha) . save (’method2 . jpg ’)

10

