$\begin{array}{c} {\rm Midterm}~\#2~{\rm of~ECE~639,~(CRN:~25576)}\\ {\rm 6\text{--}7pm,~Thursday,~November~17,~2022,~BHEE224.} \end{array}$

1. Enter your student ID number, and signature in the space provided on this page.
2. This is a closed book exam.
3. The instructor will hand out loose sheets of paper for the rough work.
4. Neither calculators nor help sheets are allowed.
Name:
realite.
Student ID:
As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together — We are Purdue.

Date:

Signature:

Question 1: [25%]

Consider an (n,k) binary cyclic code with the generator polynomial denoted by g(x). Suppose g(1) = 0. Prove that the value of $\text{weight}(\vec{c_i})$ is even for any codeword $\vec{c_i}$, $i \in \{1, \dots, 2^k\}$.

Hint 1: for two binary vectors \vec{a} and \vec{b} . If both $\mathsf{weight}(\vec{a})$ and $\mathsf{weight}(\vec{b})$ are even, then $\mathsf{weight}(\vec{a} + \vec{b})$ is even. You can use this fact directly.

Hint 2: Given g(x), it is useful to convert g(x) to the generating matrix G.

Question 2: [25%] Consider a primitive binary polynomial p(x) satisfying $\deg(p(x)) = l$. Define $g(x) = (x+1) \cdot p(x)$. Consider a length $n = 2^l - 1$ code $\mathbb C$ such that the codeword polynomial is $c(x) = m(x) \cdot g(x)$ where the message polynomial m(x) satisfies $\deg(m(x)) \leq n - l - 2$.

Prove that \mathbb{C} is cyclic.

Hint: for any two monic polynomials a(x) and b(x), we always have

$$a(x) \cdot b(x) = \Big(\mathsf{l.c.m.}(a(x), b(x))\Big) \cdot \Big(\mathsf{g.c.d.}(a(x), b(x))\Big) \tag{1}$$

where "l.c.m." stands for least common multiple and "g.c.d." stands for greatest common divider. For example,

$$(x+1) \cdot p(x) = \Big(\mathsf{l.c.m.}(x+1,p(x))\Big) \cdot \Big(\mathsf{g.c.d.}(x+1,p(x))\Big). \tag{2}$$

Question 3: [25%] In the lecture, we proved that a Reed-Muller code RM(r, m) must have $d_{\min} = 2^{m-r}$. The proof is quite complicated and relies on induction. It turns out that proving $d_{\min} \leq 2^{m-r}$ is very easy. Please write down a short proof why $d_{\min} \leq 2^{m-r}$.

Hint: It can be easily done by following the construction of the generating matrix G of the RM(r, m) code.

Question 4: [25%] Consider a finite field $GF(2^m)$ with $m \geq 5$ and let β denote a primitive element of $GF(2^m)$. We use $\Phi_i(x) \in GF(2)[x]$ to denote the minimal polynomial of element β^i . That is, $\Phi_i(x)$ has the roots β^i , $(\beta^i)^2$, $(\beta^i)^2$, \cdots , $(\beta^i)^2$ where l is the degree of $\Phi_i(x)$.

- 1. [10%] Prove that $\Phi_4(x) = \Phi_1(x)$;
- 2. [10%] Prove that $\Phi_6(x) = \Phi_3(x)$;
- 3. [5%] Prove that for any even integer $j \geq 2$, we can find an odd integer $1 \leq i < j$ satisfying $\Phi_j(x) = \Phi_i(x)$. Hint: as can be seen, this sub-question is a generalization of the previous two sub-questions.