Midterm \#2 of ECE 639, (CRN: 25576)
6-7pm, Thursday, November 17, 2022, BHEE224.

1. Enter your student ID number, and signature in the space provided on this page.
2. This is a closed book exam.
3. The instructor will hand out loose sheets of paper for the rough work.
4. Neither calculators nor help sheets are allowed.

Name:

Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.

Signature:
Date:

Question 1: [25\%]
Consider an (n, k) binary cyclic code with the generator polynomial denoted by $g(x)$. Suppose $g(1)=0$. Prove that the value of weight $\left(\vec{c}_{i}\right)$ is even for any codeword $\vec{c}_{i}, i \in$ $\left\{1, \cdots, 2^{k}\right\}$.

Hint 1: for two binary vectors \vec{a} and \vec{b}. If both weight (\vec{a}) and weight (\vec{b}) are even, then weight $(\vec{a}+\vec{b})$ is even. You can use this fact directly.

Hint 2: Given $g(x)$, it is useful to convert $g(x)$ to the generating matrix G.

Question 2: [25\%] Consider a primitive binary polynomial $p(x)$ satisfying $\operatorname{deg}(p(x))=$ l. Define $g(x)=(x+1) \cdot p(x)$. Consider a length $n=2^{l}-1$ code \mathbb{C} such that the codeword polynomial is $c(x)=m(x) \cdot g(x)$ where the message polynomial $m(x)$ satisfies $\operatorname{deg}(m(x)) \leq n-l-2$.

Prove that \mathbb{C} is cyclic.
Hint: for any two monic polynomials $a(x)$ and $b(x)$, we always have

$$
\begin{equation*}
a(x) \cdot b(x)=(\text { I.c.m. }(a(x), b(x))) \cdot(\text { g.c.d. }(a(x), b(x))) \tag{1}
\end{equation*}
$$

where "l.c.m." stands for least common multiple and "g.c.d." stands for greatest common divider. For example,

$$
\begin{equation*}
(x+1) \cdot p(x)=(\text { I.c.m. }(x+1, p(x))) \cdot(\text { g.c.d. }(x+1, p(x))) . \tag{2}
\end{equation*}
$$

Question 3: [25\%] In the lecture, we proved that a Reed-Muller code RM (r, m) must have $d_{\text {min }}=2^{m-r}$. The proof is quite complicated and relies on induction. It turns out that proving $d_{\min } \leq 2^{m-r}$ is very easy. Please write down a short proof why $d_{\min } \leq 2^{m-r}$.

Hint: It can be easily done by following the construction of the generating matrix G of the $\operatorname{RM}(r, m)$ code.

Question 4: [25\%] Consider a finite field $\mathrm{GF}\left(2^{m}\right)$ with $m \geq 5$ and let β denote a primitive element of $\mathrm{GF}\left(2^{m}\right)$. We use $\Phi_{i}(x) \in \mathrm{GF}(2)[x]$ to denote the minimal polynomial of element β^{i}. That is, $\Phi_{i}(x)$ has the roots $\beta^{i},\left(\beta^{i}\right)^{2},\left(\beta^{i}\right)^{2^{2}}, \cdots,\left(\beta^{i}\right)^{2^{l}}$ where l is the degree of $\Phi_{i}(x)$.

1. $[10 \%]$ Prove that $\Phi_{4}(x)=\Phi_{1}(x)$;
2. [10\%] Prove that $\Phi_{6}(x)=\Phi_{3}(x)$;
3. [5\%] Prove that for any even integer $j \geq 2$, we can find an odd integer $1 \leq i<j$ satisfying $\Phi_{j}(x)=\Phi_{i}(x)$. Hint: as can be seen, this sub-question is a generalization of the previous two sub-questions.
