Midterm #1 of ECE 639, (CRN: 25576) 6–7pm, Wednesday, October 05, 2022, BHEE005.

- 1. Enter your student ID number, and signature in the space provided on this page.
- 2. This is a closed book exam.
- 3. The instructor will hand out loose sheets of paper for the rough work.
- 4. Neither calculators nor help sheets are allowed.

Name:

Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together — We are Purdue.

Signature:

Date:

Question 1: [30%]

Consider the following scheme that sends a ternary message $M \in \{0, 1, 2\}$.

If M = 0, we send a 1000-bit vector $\vec{X} = \underbrace{000\cdots0}_{1000}$; if M = 1, we send a 1000-bit vector $\vec{X} = \underbrace{11\cdots1}_{500}$; and if M = 2, we send a 1000-bit vector $\vec{X} = \underbrace{0\cdots0}_{1\cdots1}^{500}$.

Suppose the binary vector \vec{X} is sent through an i.i.d. Binary Symmetric Channel (BSC) with crossover probability p < 0.5. We denote the noisy observation by \vec{Y} and the corresponding Maximum Likelihood decoder by $\hat{M}_{\rm ML}(\vec{Y})$.

1. [30%] Please estimate/upper bound the probability $P(\hat{M}_{\rm ML}(\vec{Y}) \neq M | M = 2)$ by the Chernoff inequality

Hint 1: You may need to use the *union bound* in probability. That is, $P(A \cup B) \leq P(A) + P(B)$.

Hint 2: $\hat{M}_{ML}(\vec{Y}) \neq 2$ is the event that EITHER the likelihood of M = 0 is larger than that of M = 2, OR the likelihood of M = 1 is larger than that of M = 2.

Question 2: [35%] Consider two sets of i.i.d. discrete random variables $\{X_i : i \ge 1\}$ and $\{Y_j : j \ge 1\}$, and we assume that $\{X_i\}$ and $\{Y_j\}$ are independent and their marginal distributions are $X_i \sim P_X$ and $Y_j \sim P_Y$, respectively. Also assume, without loss of generality, that $E(X_i) < 0$ and $E(Y_j) < 0$.

For any even integer $n \ge 1$, define

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \tag{1}$$

$$\bar{Y}_n = \frac{1}{n} \sum_{j=1}^n Y_j \tag{2}$$

$$\bar{Z}_n = \frac{1}{n} \left(\sum_{i=1}^{0.5n} X_i + \sum_{j=1}^{0.5n} Y_j \right) = 0.5 \left(\frac{1}{0.5n} \sum_{i=1}^{0.5n} (X_i + Y_i) \right)$$
(3)

That is, \bar{X}_n is the empirical average of X_i after *n* samples; \bar{Y}_n is the empirical average of Y_j after *n* samples; and \bar{Z}_n is the empirical average of X_i and Y_j after we sample 0.5*n* times from each of the i.i.d. random variables $\{X_i\}$ and $\{Y_j\}$.

Let c_X denote the asymptotic *decay rate* of the probability $P(\bar{X}_n > 1)$. That is, for any $\epsilon > 0$,

$$e^{-n \cdot (c_X + \epsilon)} < P(\bar{X}_n > 1) \le e^{-n \cdot c_X}$$
, for all sufficiently large *n*. (4)

Similarly, we can define the asymptotic decay rate of the probabilities $P(\bar{Y}_n > 1)$ and $P(\bar{Z}_n > 1)$, respectively. That is,

$$e^{-n \cdot (c_Y + \epsilon)} < P(\bar{Y}_n > 1) \le e^{-n \cdot c_Y}$$
, for all sufficiently large n . (5)

$$e^{-n \cdot (c_Z + \epsilon)} < P(\bar{Z}_n > 1) \le e^{-n \cdot c_Z}$$
, for all sufficiently large *n*. (6)

(7)

Prove that $c_Z \leq \frac{c_X + c_Y}{2}$ for any possible marginal distributions P_X and P_Y .

Hint 1: The expressions e^{-c_X} and e^{-c_Y} can be obtained by standard Chernoff bound results.

Hint 2: You may want to upper bound $P(\overline{Z}_n > 1)$ by applying Chernoff bound based on a new random variable $W_i = X_i + Y_i$. If successful, this will give you the e^{-cz} value.

Hint 3: Comparing the expressions of e^{-c_X} , e^{-c_Y} , and e^{-c_Z} will give us the desired inequality.

Question 3: [15%]Consider any finite group G with the associated multiplication operator ".", and H is a sub-group of G. Prove that for any three elements $x \in G$, $y \in G$, and $h_1 \in H$ satisfying $x = y \cdot h_1$, the following three statements are always true.

Statement 1: For any $h_2 \in H$, we can always find another $h_3 \in H$ such that $x \cdot h_2 = y \cdot h_3$.

Statement 2: For any $h_4 \in H$, we can always find another $h_5 \in H$ such that $x \cdot h_5 = y \cdot h_4$.

Statement 3: $\{x \cdot h : h \in H\} = \{y \cdot h : h \in H\}.$

Question 4: [20%] Consider the Galois Field $GF(3^3)$ generated by an irreducible polynomial $g(x) = x^3 + 2x + 2 \in \mathbb{F}_3[x]$. Under this finite field, what is the value of $12 \cdot 20$. Hint: 12 = 110 in base-3; and 20 = 202 in base-3.