Midterm \#1 of ECE 639, (CRN: 25576)
$6-7 \mathrm{pm}$, Wednesday, October 05, 2022, BHEE005.

1. Enter your student ID number, and signature in the space provided on this page.
2. This is a closed book exam.
3. The instructor will hand out loose sheets of paper for the rough work.
4. Neither calculators nor help sheets are allowed.

Name:

Student ID:

As a Boiler Maker pursuing academic excellence, I pledge to be honest and true in all that I do. Accountable together - We are Purdue.

Signature:
Date:

Question 1: [30\%]
Consider the following scheme that sends a ternary message $M \in\{0,1,2\}$.
If $M=0$, we send a 1000 -bit vector $\vec{X}=\overbrace{00 \cdots 0}^{1000}$;
if $M=1$, we send a 1000 -bit vector $\vec{X}=\overbrace{11 \cdots 1}^{1000}$;
and if $M=2$, we send a 1000 -bit vector $\vec{X}=\overbrace{0 \cdots 0}^{500} \overbrace{1 \cdots 1}^{500}$.
Suppose the binary vector \vec{X} is sent through an i.i.d. Binary Symmetric Channel (BSC) with crossover probability $p<0.5$. We denote the noisy observation by \vec{Y} and the corresponding Maximum Likelihood decoder by $\hat{M}_{\mathrm{ML}}(\vec{Y})$.

1. [30\%] Please estimate/upper bound the probability $P\left(\hat{M}_{\mathrm{ML}}(\vec{Y}) \neq M \mid M=2\right)$ by the Chernoff inequality
Hint 1: You may need to use the union bound in probability. That is, $P(A \cup B) \leq$ $P(A)+P(B)$.
Hint 2: $\hat{M}_{\mathrm{ML}}(\vec{Y}) \neq 2$ is the event that EITHER the likelihood of $M=0$ is larger than that of $M=2$, OR the likelihood of $M=1$ is larger than that of $M=2$.

Question 2: [35\%] Consider two sets of i.i.d. discrete random variables $\left\{X_{i}: i \geq 1\right\}$ and $\left\{Y_{j}: j \geq 1\right\}$, and we assume that $\left\{X_{i}\right\}$ and $\left\{Y_{j}\right\}$ are independent and their marginal distributions are $X_{i} \sim P_{X}$ and $Y_{j} \sim P_{Y}$, respectively. Also assume, without loss of generality, that $E\left(X_{i}\right)<0$ and $E\left(Y_{j}\right)<0$.

For any even integer $n \geq 1$, define

$$
\begin{align*}
\bar{X}_{n} & =\frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{1}\\
\bar{Y}_{n} & =\frac{1}{n} \sum_{j=1}^{n} Y_{j} \tag{2}\\
\bar{Z}_{n} & =\frac{1}{n}\left(\sum_{i=1}^{0.5 n} X_{i}+\sum_{j=1}^{0.5 n} Y_{j}\right)=0.5\left(\frac{1}{0.5 n} \sum_{i=1}^{0.5 n}\left(X_{i}+Y_{i}\right)\right) \tag{3}
\end{align*}
$$

That is, \bar{X}_{n} is the empirical average of X_{i} after n samples; \bar{Y}_{n} is the empirical average of Y_{j} after n samples; and \bar{Z}_{n} is the empirical average of X_{i} and Y_{j} after we sample $0.5 n$ times from each of the i.i.d. random variables $\left\{X_{i}\right\}$ and $\left\{Y_{j}\right\}$.

Let c_{X} denote the asymptotic decay rate of the probability $P\left(\bar{X}_{n}>1\right)$. That is, for any $\epsilon>0$,

$$
\begin{equation*}
e^{-n \cdot\left(c_{X}+\epsilon\right)}<P\left(\bar{X}_{n}>1\right) \leq e^{-n \cdot c_{X}}, \text { for all sufficiently large } n . \tag{4}
\end{equation*}
$$

Similarly, we can define the asymptotic decay rate of the probabilities $P\left(\bar{Y}_{n}>1\right)$ and $P\left(\bar{Z}_{n}>1\right)$, respectively. That is,

$$
\begin{align*}
& e^{-n \cdot\left(c_{Y}+\epsilon\right)}<P\left(\bar{Y}_{n}>1\right) \leq e^{-n \cdot c_{Y}}, \text { for all sufficiently large } n . \tag{5}\\
& e^{-n \cdot\left(c_{Z}+\epsilon\right)}<P\left(\bar{Z}_{n}>1\right) \leq e^{-n \cdot c_{Z}}, \text { for all sufficiently large } n . \tag{6}
\end{align*}
$$

Prove that $c_{Z} \leq \frac{c_{X}+c_{Y}}{2}$ for any possible marginal distributions P_{X} and P_{Y}.
Hint 1: The expressions $e^{-c_{X}}$ and $e^{-c_{Y}}$ can be obtained by standard Chernoff bound results.

Hint 2: You may want to upper bound $P\left(\bar{Z}_{n}>1\right)$ by applying Chernoff bound based on a new random variable $W_{i}=X_{i}+Y_{i}$. If successful, this will give you the $e^{-c_{Z}}$ value.

Hint 3: Comparing the expressions of $e^{-c_{X}}, e^{-c_{Y}}$, and $e^{-c_{Z}}$ will give us the desired inequality.

Question 3: [15\%]Consider any finite group G with the associated multiplication operator ".", and H is a sub-group of G. Prove that for any three elements $x \in G, y \in G$, and $h_{1} \in H$ satisfying $x=y \cdot h_{1}$, the following three statements are always true.

Statement 1: For any $h_{2} \in H$, we can always find another $h_{3} \in H$ such that $x \cdot h_{2}=$ $y \cdot h_{3}$.

Statement 2: For any $h_{4} \in H$, we can always find another $h_{5} \in H$ such that $x \cdot h_{5}=$ $y \cdot h_{4}$.

Statement 3: $\{x \cdot h: h \in H\}=\{y \cdot h: h \in H\}$.

Question 4: [20\%] Consider the Galois Field $G F\left(3^{3}\right)$ generated by an irreducible polynomial $g(x)=x^{3}+2 x+2 \in \mathbb{F}_{3}[x]$. Under this finite field, what is the value of $12 \cdot 20$.

Hint: $12=110$ in base- 3 ; and $20=202$ in base- 3 .

