* Let us studly a bit more on the properties of finite-field polynomials
* Deft ${ }^{\text {Let }} \alpha \in \operatorname{GF}\left(P^{m}\right)$. A minimal polynomial of α is the smallest degree monic (non-zero) polynomial $f(x) \in F_{p}[x]$ such that $\Phi f(\alpha)=0$ in $G F\left(p^{m}\right)$

Theorem: $\forall \alpha \in G F\left(p^{m}\right)$, its minimal polynomial $f(x)$ exists and it is cenique.
Furthermore, $f(x)$ must also satisfy the following properties (in addition to $0, \Theta)$
(3) $\operatorname{deg}(f(x)) \leqslant m$
(4) for all $\tilde{f}(x) \in F_{p}[x]$, ,
(4) For all $f(x) \in F_{p}[x]$, $\tilde{f}(\alpha)=0$ in $G F\left(p^{m}\right)$ implies $f(x) \mid \tilde{f}(x)$ in $F_{p}[x]$
(5) $f(x)$ is irreducible in $F_{p}[x]$.

Some remarks (partial proof)

$$
\begin{aligned}
* & \tilde{f}(x)=Q(x) \cdot f(x)+r(x) \\
\Rightarrow & \tilde{f}(\alpha)=Q(\alpha) \cdot 0+r(\alpha)=0
\end{aligned}
$$

because $f(x)$ is "minimal"
$\Rightarrow r(\alpha)=0 \Rightarrow r(x)=0$ is zero-polynomial
\Rightarrow uniqueness of $f(x)$ \& (4)

* If $f(x)=a(x) \cdot b(x)$
then $f(\alpha)=a(\alpha) \cdot b(\alpha)=0$.
\Rightarrow either $a(\alpha)=0$ or $b(\alpha)=0$. contradicts "minimal deg".

Relationship to Primitive Polynomials.
If $\alpha \in G F\left(p^{m}\right)$ is also primitive then, the miainal polynomial of \mathbb{Q} is exactly the primitive polynomial that generate GF(P^{m})

Q: Any further relationship between α and its minimal polynomial?

Conjugates: $\beta \in G F\left(p^{m}\right)$, the conjugates of β w.r.t. $\operatorname{GF}(P)$ are $\beta, \beta^{p}, \beta^{p^{2}}, \cdots$.
i.e. apply ($)^{\rho}$ iteratively

The conjugacy class ot $\beta \in G F\left(p^{m}\right)$ with respect to GF() is
with respeed to ~ 1 (v,

$$
\left\{\beta^{P^{i}} \in G F\left(P^{m}\right): \quad i=0,1,2, \ldots\right\}
$$

Fact \# 1: (Proof sketches)
The conjugacy class is finite proof: because $G F\left(P^{m}\right)$ is finite.

Fact \# 2: First repeated element is

Fact \#3: $\quad d / m$

$$
\begin{aligned}
& \therefore \beta^{p^{m}}=\beta \quad \text { and } \beta^{p^{d}}=\beta \\
& \Rightarrow\left(\beta^{p^{d}}\right)^{p^{m-d}}=\beta \\
& \Rightarrow \beta^{p^{m-d}}=\beta \quad \text { repeated applying } \\
& \Rightarrow 11 \mathrm{~m}
\end{aligned}
$$

This relationship.

$$
\Rightarrow d \mid m
$$

Roots theorem
Let $\alpha \in G F\left(p^{m}\right)$ and $f(x) \in F_{p}[x]$ is the minimal polynomial of α.
Then the roots of $f(x)$ in GF(P $\left.P^{m}\right)$ are exactly the conjingacy class of $f(x)$ i.e. $\left\{\alpha, \alpha^{p}, \alpha^{p^{2}}, \alpha^{p^{3}}, \cdots \alpha^{d-1}\right\}$ and $f(x) \underset{\substack{\text { an } \\ \text { thus }}}{\text { be written as }}$

$$
f(x)=\prod_{i=0}^{d-1}\left(x-\alpha^{p^{i}}\right) \text { in } \operatorname{GF}\left(p^{m}\right)
$$

Theorem: For $\forall m, r>0$ integers. and $\forall f(x) \in F_{p^{m}}[x]$

$$
=f_{0}+f_{1} x^{\prime}+\cdots+f_{L} x^{L}
$$

We have

$$
(f(x))^{p^{r}}=f p^{p^{r}}+f \cdot p^{p^{r}} x^{p^{r}}+\cdots+f^{p^{r}} x^{p^{r} \cdot L}
$$

$$
(f(x))^{p^{\prime}}=f_{0}^{p^{r}}+f_{1}^{p^{r}} x^{p^{r}}+\cdots+f_{2}^{p^{r}} x^{p^{r}-L}
$$

prot: By induction.

$$
\begin{aligned}
& L=1:\left(f_{0}+f_{1} x\right)^{p^{r}} \\
&=\sum_{k=0}^{p^{r}}\binom{p^{r}}{k} \cdot f_{0}^{k} \cdot\left(f_{1} x\right)^{p^{r}-k} \\
&=f_{0}^{p^{r}}+f_{1}^{p^{r}} x^{p^{r}}+\sum_{k=1}^{p^{r}-1}\binom{p^{r}}{k} \cdot f_{0}^{k} \\
&(f, x)^{p^{r}-k}
\end{aligned}
$$

Observation: \quad \#1 $p \left\lvert\,\binom{ p^{r}}{l}\right.$ is true for all r for all $l=1, \cdots p^{r}-1$
$p f: p$ is a prime

$$
\Rightarrow \quad p l\binom{p^{r}}{l}
$$

Observation \#2: $\binom{p^{r}}{k}$ is not an element in $\operatorname{GF}\left(P^{m}\right)$, instead it is shorthand for counting how
is "shorthand "for counting how" many "terms" in the summation.

$$
\begin{aligned}
& \binom{p^{r}}{k} f_{0}^{k}\left(f_{1} x^{1}\right)^{p^{r}-k} \\
& =\sum_{l=1}^{\binom{p r}{k}} f_{0}^{k} \cdot\left(f_{1} x^{k}\right)^{p^{r}-k} \\
& =\sum_{l=1}^{\binom{P_{k}^{r}}{k} / p} \cdot \sum_{e^{\prime}=1}^{P} f_{0}^{k} \cdot\left(f, x^{\prime}\right)^{p^{r}-k} \\
& =\sum_{l=1}^{\left(\begin{array}{c}
P_{r}^{r}
\end{array}\right) / p} 0=0 \text {. } \\
& \frac{\Rightarrow\left(f_{0}+f_{1} x^{\prime}\right)^{p^{r}}=f_{0}^{p^{r}}+\left(f_{1} x^{\prime}\right)^{p^{r}}}{\text { For } L \geqslant 2 .} \\
& \left(f_{L-1}(x)+f_{L} \cdot x^{L}\right)^{p^{r}} \quad \downarrow_{\text {By two observations }} \\
& =\left(f_{L-1}(x)\right)^{p^{r}}+\left(f_{L} \cdot x^{L}\right)^{p^{r}}
\end{aligned}
$$

$$
=\sum_{l=0}^{L}\left(f_{l} x^{l}\right)^{p^{r}}=\left(\sum_{l=0}^{L} f_{l} x^{l}\right)^{p^{r}}
$$

