* A ring is a set R with operations + and • such that 0 R is closed under + and .

1 (R, +) B a commutative ring. (and we denote the "identity of + operations by 0)

(2) associative. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

3) The operation • is distributive over +

> That is a. (b+c) = aob + boc

* A ring is commutative (or Abelian) if a.b=b.a

* Example #1? Zmxm the integer matrices

is a king

Example #2: {0, 1, ..., m-1] w. addition card multiplication under modulo

M is a commutative ring

Example #3: The sot of "binary polynomial"

Fields.

Definish Field F with and +

OF is a commutative group with regard

to + (The identity of t is denoted
by 0)

(3) F \ \{0\} is a commutative group

cuder .

B) The o and + distribute:

a.(b+c)=a.b+a.c

Summany	Association	Identity	Invarse	Commitative	Distribue
Groups @	V	V	V		
Commutative group	V	V	V	✓	
rings +			V		allliter
Commitative +	V	/			alltillt
Fields +	V	V	V	V	
0	V	V			V
Intuition: Groups => add or subtract Rings => add, subtract, multiply Fields => add, subtract, multiply, division					
Example: R: all real numbers,					
C: all complex numbers.					
Qi all vational numbers					
Z: all integers are NOT a field.					

** Fields of finite order (finite # of elements)
is of the main interest to us.

* They were discovered by Everiste Galois

* Denoted by GF(2) where 2

B the order G: Galois