(A significant part of the lecture notes was developed by Prof. David J. Love, who taught ECE639 many of the previous offerings.)

Digital Comm.
Review and Motivation
Block Diagram

Data Source: Person or machine generating a continuous or discrete signal
Source Encoder: Transforms signal into a sequence of binary digits (bits) and removes uncontrolled redundancy

Channel Encoder: Formats the information to be transmitted so as to increase immunity to noise.
This is accomplished by inserting controlled redundancy into data (symbol) stream:
Modulator: Transforms each output symbol of the channel encoder into a waveform of duration T seconds, that is suitable for transmission or recording.

Physical Channel: waveform is corrupted (with noise).
Examples: telephone lines, mobile cellular phones, wireless LAN, telemetry, semiconductor memories, magnetic tapes, compact discs, magnetic discs underwater communications, Ethernet cables, etc.

Shannon's Channel Coding Theorem:
Every "logical channel" is associated with a channel capacity C. Furthermore, there exist channel codes for every rate $\mathrm{k} / \mathrm{n}<\mathrm{C}$, such that the k -bit information can be transmitted over n usages of the noisy logical channel, and the channel decoder can successfully "decode" the k-bit message with arbitrarily small error probability.

Brief history:
Shannon's paper was published in 1948 in the Bell System Technical Journal and used the so-called random coding proof techniques. Also at Bell Labs, Richard Hamming was working on design "practical" ways of constructing codes to detect and/or correct channel errors. Hamming published his first results
in 1950 . in 1950.
Questions:

* How to formalize the concept of "logical Channel?
* How to design "good" channel code to approach the predicted performance limit C?

Review of prob notation
(Assuming discrete random variables)
Capital $X Y Z$: Random Variables.
small x, y, z : deterministic values $P_{x}(x)=\operatorname{Prob}(X=x)$ is a number (i.e, a function w.r.t. x)
$P_{x}(0): S_{x} \longmapsto[0,1]$ is a function
$P_{x}(\cdot): S_{x} \longmapsto[0,1]$ is a tunction

$$
\begin{aligned}
& P_{Y \mid X}(y \mid x)=P_{r o b}(Y=y \mid X=x) \text { is a } \\
& \begin{array}{l}
\text { number }
\end{array} \\
& P_{Y \mid X}(\cdot \mid \cdot): S_{Y} \times S_{X} \longmapsto[0,1] \\
& P_{Y \mid X}(y \mid \cdot): S_{X} \longrightarrow[0,1]
\end{aligned}
$$

Inference Problem:

We know ${ }^{(1)} P_{X},{ }^{3} P_{Y I X}$, (3) and observe $Y=y$
Example 1:
$P_{x}(x)= \begin{cases}1 / 2 & \text { if } x=1 \text { or } x=-1 \\ 0 & \text { otherwise }\end{cases}$
$Y=X+N$ where N is Gaussian with mean 0 and var. 0^{2}

$$
\Rightarrow P_{Y \mid X} \sim G_{S n}\left(X, \sigma^{2}\right)
$$

$\Rightarrow P_{\text {Yo }} \sim \operatorname{Gish}\left(x, \sigma^{*}\right)$
$Q:$ Observing $Y=2.7$, what is the \hat{X} value?
Example 2:
Error Contour Coding is an example of the inference problem:

$$
\begin{aligned}
& k \text {-bit string } 10 \text { bit sting Modeled as } \\
& \text { say } k=4 \\
& 1011 \\
& X=1011010110 \text { PYX } \\
& \text { ENC } \\
& \text { (logical Chase) } \\
& K=0110110010 \\
& \text { Here } P_{x}(x)= \begin{cases}\frac{1}{16} & \text { ir } \begin{array}{rl}
x=x_{i} \\
\text { of the being one }
\end{array} 6 \text { passion }\end{cases} \\
& \text { of the } 16 \text { possible } \\
& \text { otherwise }
\end{aligned}
$$

Notation: Each of the 16 potential outputs of ENC is called a codeword C.llaxtiunli, the it manmade is called the

IIVL is called a coareory
Collectively the 16 codewords is called the codebook.
from the from the
\downarrow codebook
logical ch.
We know © P_{X}, © $P_{Y} i x$,
Question: Observing $Y=$
what is the best guess/inference of

It turns out that by casting it as an inference prob, we can explore the fundamental limit of CH codling.

A special case of the inference prob is the hypothesis testing problem

Two hypothesis
H_{0} : (null hypothesis) $Y \sim P_{Y}$
$H_{1}:\left(\right.$ alternative hypothesis) $Y \sim Q_{Y}$
$\operatorname{Prob}($ Ho is true $)=p_{0}$
$\operatorname{Prob}\left(H_{2}\right.$ is true $)=1-p_{0}$
Observe $Y=y$, Find $P\left(H_{0}\right.$ is true $\left.Y^{2} y\right)$
We can convert if to an inference prob.

$$
\begin{aligned}
& X=0, \text { or } 1 \\
& P_{Y}: P_{Y \mid X}(\cdot \mid 0) \quad Q_{Y}: P_{Y I X}(\cdot \mid 1) \\
& P_{(}\left(H_{i} \text { is true }\right)=P(X=i)
\end{aligned}
$$

Optimal Solutions of HT

* Maximum A posterior i Probability (MAP) detector

First define the posterior probability

$$
\operatorname{PXCY}_{X(Y}(x \mid y)=\operatorname{Prob}(X=x \mid Y=y)
$$

The MAP detector finds

$$
\hat{X}_{\text {MAP }}(y)=\max _{x \in\{0,1\}} P_{X \mid Y}(x \mid y)
$$

Q: How to compute $\hat{X}_{\text {MAP }}(y)$?
A_{1} : Bayes Rule:

$$
\begin{aligned}
& P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)} \\
& =\frac{P(X=X) \cdot P(Y=y \mid X=x)}{P(X=0) \cdot P(Y=y \mid X=0)+P(X=1) \cdot P(Y=y \mid X=1)}
\end{aligned}
$$

repeat the above computation for $x=0$ and 1 then choose x^{*} that maximizes $P_{X \mid Y}(x \mid y)$
A2: We are NOT interested in the value of $P_{X I Y}(x \mid y)$. Instead, we are only interested in

$$
\begin{aligned}
P_{X \mid Y}(0 \mid y) & \geqslant P_{X \mid Y}(1 \mid y) \\
\Leftrightarrow & P_{X}(0) P_{Y \mid X}(y \mid 0)
\end{aligned} P_{X}(1) P_{Y X}(y \mid 1) \quad,
$$

since they share the same denominator

AS: $\quad \frac{P_{X}(0) P_{Y} \mid X(y \mid 0)}{P_{x}(1) P_{Y} \mid x(y \mid 1)} \stackrel{\text { out } 0}{\gtrless} 1$
Ax: $\quad \frac{P_{Y X X}(y \mid 0)}{P_{Y \mid X}(y \mid 1)} \geqslant \frac{P_{X}(1)}{P_{X}(0)}$
$A 5: \quad \log \left(\frac{P_{Y X}(y \mid 0)}{P_{Y \mid X}(y \mid 1)}\right) \geqslant \log \left(\frac{P_{X}(1)}{P_{X}(0)}\right)$
All 5 methods are used regularly.
We can go a bit deeper

* Define the likelihood function as.

$$
P_{Y \mid X}(y \mid \cdot)
$$

Comparison: The sum of A posterior Prob function is 1 . 1.1 .1 .1 .1
function is 1 .
But the sum of the likelihood function is not 1.

* Define $L(y)=\frac{P_{Y X X}(y \mid 0)}{P_{Y(X}(y \mid 1)}$ as the likelihood ratio.
* A decision rule

$$
L(y)=\frac{P_{Y \mid X}(y / 0)}{P_{Y \mid X}(y \mid 1)} \underset{\substack{\text { outputs } 1}}{\geqslant} \eta
$$

is thus called a likelihood ratio test with threshold η.

* The $\hat{X}_{\text {Map }}(y)$ in $A A$ is thus a likelihood ratio test with $\eta=\frac{P_{x}(1)}{P_{x}(0)}$

$$
\hat{X}_{M A P}(y)=\left\{\begin{array}{lll}
0 & \text { if } L(y)>\eta=\frac{P_{x}(1)}{P_{(}(t)} \\
0 \text { or } 1 & \text { if } L(y)=\eta \\
1 & \text { if } L(y)<\eta
\end{array}\right.
$$

* Another equivalent form:

Define log likelihood ratio (LLR) as $\operatorname{LLR}(y)=\log (\cdot L(y))$

$$
\begin{gathered}
=\log \left(\frac{P_{Y \mid X}(y \mid 0)}{P_{Y} \mid X(y \mid 1)}\right) \\
\hat{X}_{\text {MAP }}(y)= \begin{cases}0 & \text { if } \operatorname{LR}(y)> \\
0 \text { or } 1 & \text { if } \left.\log \log (y) / \frac{P_{X(0)}}{P_{X}(1)}\right) \\
2 & \text { if } \operatorname{LR}(y)<\end{cases}
\end{gathered}
$$

Summary.
likelihood ratio test with threshold η

* \hat{X} map (y) is optimal for HT,
* $\hat{x}_{M L}(y)$ is not necessarily optimal for H / T.
* When $P(X=0)=P(X=1)=\frac{1}{2}$

$$
\hat{X}_{M A P}(0) \equiv \widehat{X}_{M L}(0)
$$

Multiple Hypothesis Testing (Multiple Testing)

$$
x=0,1,2, \cdots, k-1
$$

$$
\begin{aligned}
\Rightarrow \hat{X}_{\text {MAP }}(y)= & \underset{X \in\{0,1, \cdots, k-1\}}{\operatorname{argmax}} \quad P_{X(Y}(x \mid y) \\
\hat{X}_{M L}(y)= & \underset{X \in\{0,1, \cdots, k-1\}}{\operatorname{argmax}} P_{Y \mid X}(y \mid x)
\end{aligned}
$$

Example: A binary symmetric channel (BSC) w. non-unform prior distribution

$Q:$ Find the $X_{\operatorname{rap}}(y)$
Ans: We need to determine $X_{\text {map }}(y)$ as a function of y
If $y=0$

$$
P_{X \mid Y}(x \mid 0)=\left\{\frac{\frac{1}{3}(1-p)}{\frac{2}{3} p+\frac{1}{3}(1-p)}=\frac{1-p}{1+p} \quad \text { if } \quad x=0\right.
$$

$$
P_{X \mid Y}(x \mid 0)= \begin{cases}\frac{\frac{1}{3}(1-p)}{\frac{2}{3} p+\frac{1}{3}(1-p)}=\frac{1-p}{1+p} & \text { if } x=0 \\ \frac{2 p}{1+p} & \text { if } x=1\end{cases}
$$

If $y=1$

$$
P_{X I Y}(X \mid 1)= \begin{cases}\frac{p}{2-p} & \text { if } x=0 \\ \frac{2-2 p}{2-p} & \text { if } x=1\end{cases}
$$

Our goal: $\hat{X}_{\text {MAP }}(y)=\left\{\begin{aligned} & \text { if } y=0 \\ & \text { if } y=1\end{aligned}\right.$
We have three cases clepending on the p value

Case 1: if $p<\frac{1}{3}$

$$
X_{\operatorname{mAp}}(y)=\left\{\begin{array}{lll}
0 & \text { if } & y=0 \\
1 & \text { if } & y=1
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Case 2: If } \frac{1}{3}<p<\frac{2}{3} \\
& \hat{X}_{\text {MAP }}(y)=\left\{\begin{array}{lll}
1 & \text { if } y=0 \\
1 & \text { if } & y=1
\end{array}\right.
\end{aligned}
$$

Case 3: If $\frac{2}{3}<p<1$

$$
\hat{X}_{\text {MAP }}(y)=\left\{\begin{array}{lll}
1 & \text { if } y=0 \\
0 & \text { if } y=1
\end{array}\right.
$$

