Q32. With the field generated by $x^{6}+x+1$, ix primitive element is

$$
\beta=000010=2 .
$$

The conjugacy cases are Minimal polynomials

$$
\begin{aligned}
& \beta^{0} \longrightarrow x+1 \\
& \beta_{1}^{1} \beta^{2}, \beta^{4}, \beta^{8}, \beta^{16}, \beta^{32} \longrightarrow x^{6}+x+1 \\
& \beta^{3}, \beta^{6}, \beta^{12}, \beta^{24}, \beta^{48}, \beta^{33} \longrightarrow x^{6}+x^{4}+x^{2}+x+1 \\
& \beta^{5}, \beta^{10}, \beta^{20}, \beta^{40}, \beta^{17} \longrightarrow x^{6}+x^{5}+x^{2}+x+1 \\
& \beta^{7}, \beta^{14}, \beta^{28}, \beta^{56}, \beta^{49}, \beta^{35} \longrightarrow x^{6}+x^{3}+1 \\
& \beta^{9}, \beta^{18}, \beta^{36} \longrightarrow x^{3}+x^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& \beta^{11}, \beta^{22}, \beta^{44}, \beta^{25}, \beta^{50}, \beta^{27} \longrightarrow x^{6}+x^{5}+x^{3}+x^{2}+1 \\
& \beta^{13}, \beta^{26}, \beta^{52}, \beta^{41}, \beta^{19}, \beta^{38} \longrightarrow x^{6}+x^{4}+x^{3}+x+1 \\
& \beta^{15}, \beta^{30}, \beta^{60}, \beta^{57}, \beta^{51}, \beta^{39} \longrightarrow x^{6}+x^{5}+x^{4}+x^{2}+1 \\
& \beta^{21}, \beta^{42} \longrightarrow x^{2}+x+1 \\
& \beta^{23}, \beta^{46}, \beta^{24}, \beta^{58}, \beta^{53}, \beta^{43} \longrightarrow x^{6}+x^{5}+x^{4}+x+1 \\
& \therefore 1 \\
& \beta^{27}, \beta^{54}, \beta^{45} \longrightarrow x+1 \\
& \beta^{31}, \beta^{62}, \beta^{61}, \beta^{59}, \beta^{55}, \beta^{47} \rightarrow x^{6}+x^{5}+1
\end{aligned}
$$

$t=1 \Rightarrow 4$ consecutire rots

$$
\begin{array}{rlrl}
\beta^{\prime} \cdot \beta^{2}, \beta^{3} \cdot \beta^{4} & g(x) & =\left(x^{6}+x+1\right)\left(x^{6}+x^{4}+x^{2}+x+1\right) \\
& -x^{12}, x^{10}, x^{8}, x^{5} x^{4} 2^{3}, 1
\end{array}
$$

$$
\begin{aligned}
& =x^{12}+x^{10}+x^{8}+x^{5}+x^{4}+x^{3}+1 \\
& \frac{\beta^{62}, \beta^{61}, \beta^{60}, \beta^{59} g(x)=x^{12}+x^{9}+x^{8}+x^{7}+x^{4}+x^{2}+1}{Q_{1}=\beta^{54}} \\
& S_{2}=\beta^{45} \\
& S_{8}=\beta^{38} \\
& S_{4}=\beta^{24} \\
& \lambda=\beta^{54} \quad \lambda_{2}=\beta^{57} \\
& \Lambda(x)=1+\beta^{54} x+\beta^{57} x^{2}
\end{aligned}
$$

