ECE 639, Homework \#5 (CRN: 25576) Due date: Friday 11/04/2022 during the lecture

https://engineering.purdue.edu/~chihw/22ECE639F/22F_ECE639.html

Question 19: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 3.3] Consider a systematic $(8,4)$ code with the whose parity-check equations are

$$
\begin{align*}
& p_{0}=x_{1}+x_{2}+x_{3} ; \tag{1}\\
& p_{1}=x_{0}+x_{1}+x_{2} ; \tag{2}\\
& p_{2}=x_{0}+x_{1}+x_{3} ; \tag{3}\\
& p_{3}=x_{0}+x_{2}+x_{3} ; \tag{4}
\end{align*}
$$

Construct the functions of how to compute the syndromes s_{0}, s_{1}, s_{2}, and s_{3}.

Question 20: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 3.10] Continue from the above question. Construct and describe the syndrome decoder of the above code.

Question 21: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 3.14] Continue from the above question. Show that this code is self-dual. That is, $C=C^{\perp}$.

Question 22: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 3.5] Let C be a linear code with both even and odd weight codewords. Show that the number of even-weight codewords is equal to the number of odd-weight codewords.

Question 23: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 3.7] Prove that the Hamming distance satisfies the triangle inequality; that is, let \mathbf{x}, \mathbf{y}, and \mathbf{z} be three n-tuples over GF (2), and show that

$$
\begin{equation*}
d(\mathbf{x}, \mathbf{y})+d(\mathbf{y}, \mathbf{z}) \geq d(\mathbf{x}, \mathbf{z}) \tag{5}
\end{equation*}
$$

Question 24: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 4.4] Compute the error probability of $(15,11)$ Hamming code over a Binary Symmetrc Channel with crossover probability $p=10^{-2}$.

Question 25: Consider a binary CRC code generated by a generator polynomial $g(x)=$ $x^{16}+x^{15}+x^{2}+1$. We know that for some codeword length n (unit: bits), this CRC code will be cyclic. Find the smallest of such n by writing a short MATLAB program.

Question 26: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 5.7] Consider a binary (n, k) cyclic code C generated by $g(x)$. Let

$$
\begin{equation*}
g^{*}(x)=x^{n-k} g\left(x^{-1}\right) \tag{6}
\end{equation*}
$$

Show that $g^{*}(x)$ also generates an (n, k) cyclic code C^{\prime}.

