## ECE 639, Homework \#4 (CRN: 25576)

 Due date: Wednesday 10/19/2022 during the lecture```
https://engineering.purdue.edu/~chihw/22ECE639F/22F_ECE639.html
```

Question 15: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 2.4] Construct the prime field $G F(11)$ with modulo-11 addition and multiplication. Find all the primitive elements and determine the orders of other elements.

Question 16: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 2.10] Show that $X^{5}+X^{3}+1$ is irreducible over $G F(2)$.

Question 17: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 2.11] let $f(X)$ be a polynomial of degree $n$ over $G F(2)$. The reciprocal of $f(X)$ is defined as

$$
\begin{equation*}
f^{*}(X)=X^{n} f\left(X^{-1}\right) \tag{1}
\end{equation*}
$$

1. Prove that $f^{*}(X)$ is irreducible over $G F(2)$ if and only if $f(X)$ is irreducible over $G F(2)$.
2. Prove that $f^{*}(X)$ is primitive if and only if $f(X)$ is primitive.

Question 18: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 2.18] Consider a finite field $G F\left(2^{4}\right)$ generated by $1+X+X^{4}$. Let $\alpha=2=0010 \in G F\left(2^{4}\right)$. (One can easily verified that $\alpha$ is a primitive element.) Divide the polynomial $f(X)=\alpha^{3} X^{7}+\alpha X^{6}+$ $\alpha^{7} X^{4}+\alpha^{2} X^{2}+\alpha^{11} X+1$ over $G F\left(2^{4}\right)$ by the polynomial $g(X)=X^{4}+\alpha^{3} X^{2}+\alpha^{5} X+1$ over $G F\left(2^{4}\right)$. Find the quotient and the remainder of the division.

