ECE 639, Homework \#3 (CRN: 25576)

 Due date: Wednesday 10/05/2022 during the lecturehttps://engineering.purdue.edu/~chihw/22ECE639F/22F_ECE639.html

Question 10: Implement MATLAB programs that performs the following tasks.

1. Take any generating matrix as input and output the set of all legitimate codewords.
2. Take the following two inputs: The conditional probabilities $p_{0 \rightarrow 0}, p_{0 \rightarrow 1}, p_{1 \rightarrow 0}$, and $p_{1 \rightarrow 1}$ of an i.i.d. binary-input/binary-output channel; The observation vector \vec{y}. Implement the codeword-wise ML decoder that outputs the most likely codeword.
3. Take a generating matrix as input, plot the frame error rate (FER) and the bit error rate (BER) of the corresponding code assuming that we use the codeword-wise ML decoder.

Use your program to compare the BER and FER of the following two codes described by their parity-check matrices. We assume the channel model being a binary symmetric channel with cross over probability p. (That is, $p_{0 \rightarrow 0}=1-p, p_{0 \rightarrow 1}=p, p_{1 \rightarrow 0}=p$, and $p_{1 \rightarrow 1}=1-p$.)

The Hamming code with the following parity-check matrix:

$$
H_{1}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \tag{1}\\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

The Reed-Muller code with the following parity-check matrix:

$$
H_{2}=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \tag{2}\\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Specifically, please plot the FER and BER curves of the above two codes for the range $p=0.01$ to $p=0.5$.

Question 11: Repeat the previous question by focusing on the bit-wise ML decoder instead.

Question 12: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 2.5] Let m be a positive integer. If m is not a prime, prove that the set $\{0,1, \cdots, m-1\}$ is not a field under modulo- m addition and multiplication.

Question 13: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 2.6] Consider the integer group $G=\{0,1, \cdots, 31\}$ under modulo-32 addition. Show that $H=$ $\{0,4,8,12,16,20,24,28\}$ forms a subgroup of G.

Question 14: [Lin, Costello Jr., Error Control Coding 2nd Ed., Problem 2.9] Solve the following simultaneous equations of X, Y, Z, and W with modulo-2 arithmetic:

$$
\begin{array}{r}
X+Y+W=1, \\
X+Z+W=0 \\
X+Y+Z+W=1 \\
Y+Z+W=0 \tag{6}
\end{array}
$$

